Math 30-2: U3L4 Teacher Notes

Mutually Exclusive Events

Key Math Learnings:
By the end of this lesson, you will learn the following concepts:

Classify events as mutually exclusive or non-mutually exclusive, and explain the reasoning.

Determine if two events are complementary, and explain the reasoning.
A
Solve problems that involves mutually exclusive or non-mutually exclusive events.

Solve contextual problems that involve probability of complementary events.

Create and solve a problem that involves mutually exclusive or nonmutually exclusive events.

Mutually Exclusive and Non-Mutually Exclusive Events

Two events A and B that cannot occur at the same time are mutually exclusive events. They have no common outcomes.

Two events A and B that are not mutually exclusive have some common outcomes.

Identifying Mutually Exclusive and Non-Mutually Exclusive Events

1. Using a Venn Diagram -- When using a Venn diagram you are looking for any areas of the sets to overlap. If there is no overlap, then the events are Mutually Exclusive.

For Example:

Aces and Kings are Mutually Exclusive (can't be both)

Hearts and Kings are not Mutually Exclusive (can be both)

2. Mathematically

Step 1: Add up the probabilities of the separate events (A and B).
Step 2: Compare your answer to the given "union" statement (A U B). If they are the same, the events are mutually exclusive. If they are different, they are not mutually exclusive.

For Example:

"If $P(A)=0.20, P(B)=0.35$ and $(P \cup B)=0.51$, are A and B mutually exclusive?"

Solution:

$.20+.35=.55$
0.55 does not equal 0.51 , so the events are not mutually exclusive.

Complementary Events are Mutually Exclusive

Two events are described as complementary if they are the only two possible outcomes.

Example

Imagine we are testing whether it rains on a particular day.

Solution:

The events "it rains" and "it doesn't rain" are complementary because:

- - only one of the two events can occur
- - no other event can occur

Therefore, these two events are complementary.

Example

Consider the rolling of a die to see whether the result is odd or even.

Solution:

The events "odd" and "even" are complementary because:

- - the result must be either "odd" or "even" (not both)
- - the result cannot be anything except "odd" or "even"

Therefore, these two events are also complementary.

When two events are complementary, we can use the following properties to solve problems.

Complementary Events

If A is an event, and A^{\prime} is the complementary event,

$$
\begin{gathered}
P(A)+P\left(A^{\prime}\right)=1 \\
\text { or } \\
P\left(A^{\prime}\right)=1-P(A)
\end{gathered}
$$

Practice Problem:

Complete "Check your Understanding" question 4 on page 176 of your textbook.

Solution:

4. a) No. e.g., 2 is both an even number and a prime number.
b) Yes. e.g., You cannot roll a sum of 10 and a roll of 7 at the same time.
c) Yes. e.g., You cannot walk and ride to school at the same time.

Practice Problem:

Complete "Check your Understanding" question 5 on page 177 of your textbook.

Solution:

5. a) $P(A)=\frac{n(A)}{n(C)}$

$$
\begin{aligned}
& P(A)=\frac{144945}{389045} \\
& P(A)=\frac{28989}{77809}
\end{aligned}
$$

The probability a person who is Métis lives in Alberta
or British Columbia is $\frac{28989}{77809}$, or about 0.373 or
37.3\%.
b) $P(M)=\frac{n(M)}{n(C)}$

$$
\begin{aligned}
& P(M)=\frac{119920}{389045} \\
& P(M)=\frac{23984}{77809}
\end{aligned}
$$

The probability that a person who is Métis lives in
Manitoba or Saskatchewan is $\frac{23984}{77809}$, or about 0.308 or 30.8%.
c) Yes, because these two events are mutually exclusive, so $P(A \cap M)$ is equal to 0 .
d) The odds in favour of a person who is Métis living in one of the four western provinces are 264865 : 124 180, or 52973 : 24836.

Practice Problem:

Complete "Check your Understanding" question 8 on page 177 of your textbook.

Solution:

8. a) Let S represent studying and V represent playing video games.
$P(S \cup V)=P(S)+P(V)-P(S \cap V)$
$0.8=0.4+0.6-P(S \cap V)$
$P(S \cap V)=0.2$
The probability that John will do both activities is 0.2 or 20\%.
b) No. Since $P(S \cap V) \neq 0$, then $n(S \cap V)=0$, so the sets of favourable outcomes for S and V are not disjoint.

Practice Problem:

Complete "Check your Understanding" question 9 on page 178 of your textbook.

Solution:

9. a) No. e.g., One athlete won two ore more medals at the Summer and Winter Olympics.
b) Total number of medal winners $=307$

The odds in favour of a Canadian medal winner winning two or more medals at the Summer Olympics are 21 : (307-21) or 21 : 286.
c) $n(S \cup W)=20+47+1$
$n(S \cup W)=68$
Total number of medal winners $=307$.
The odds in favour of the athlete having won two or more medals is $68:(307-68)$ or $68: 239$.

Practice Problem:

Complete "Check your Understanding" question 11 on page 178 of your textbook.

Solution:

11. e.g., There are 67 Grade 10 students that take art and 37 that take photography. If there are 87
students, how many take both? (17)

Practice Problem:

Complete "Check your Understanding" question 12 on page 179 of your textbook.

Solution:

12. a) Let G represent wearing glasses and H represent having a hearing loss.
If 68\% of seniors have a hearing loss, and 10\% of
these people do not wear glasses, then $10 \% \cdot 68 \%$, or
6.8% of seniors have a hearing loss but do not wear
glasses. This means that 61.2% of seniors wear
glasses and have a hearing loss.
$P(H \backslash G)=6.8 \%$
$P(G \cap H)=61.2 \%$
$P(G \backslash H)=P(G)-P(G \cap H)$
$P(G \backslash H)=76 \%-61.2 \%$
$P(G \backslash H)=14.8 \%$
The probability this person will wear glasses and not have hearing aids is 14.8%.
b) Let G represent wears glasses and H represent having a hearing loss.
$P((G \cup H))=100 \%-(76 \%+6.8 \%)$
$P((G \cup H))=17.2 \%$
The probability that this person will not wear glasses and not have hearing loss is 17.2%.

Practice Problem: (KEY QUESTION)

Complete "Check your Understanding" question 13 on page 179 of your textbook.

Solution:

13. a) Let E represent the eights, and let K represent the kings. Let O represent all cards.

$$
\begin{aligned}
n(E) & =4 & & P(E \cup K)=\frac{n(E \cup K)}{n(O)} \\
n(K) & =4 & & \\
n(E \cap K) & =0 & & P(E \cup K)=\frac{8}{52} \\
n(E \cup K) & =n(E)+n(K) & & P(E \cup K)=\frac{2}{13} \\
n(E \cup K) & =8 & & \\
n(O) & =52 & &
\end{aligned}
$$

The probability of drawing an eight or a king is $\frac{2}{13}$, or about 0.154 or 15.4%.
b) Let R represent the red cards, and let F represent the face cards. Let O represent all cards.

$$
\begin{aligned}
n(R) & =26 \\
n(F) & =12 \\
n(R \cap F) & =6 \\
n(R \cup F) & =n(R)+n(F)-n(R \cap F) \\
n(R \cup F) & =26+12-6 \\
n(R \cup F) & =32 \\
n(O) & =52 \\
P(R \cup F) & =\frac{n(R \cup F)}{n(O)} \\
P(R \cup F) & =\frac{32}{52} \\
P(R \cup F) & =\frac{8}{13}
\end{aligned}
$$

The probability of drawing a red card or a face card is $\frac{8}{13}$, or about 0.615 or 61.5%.

Practice Problem:

Complete "Check your Understanding" question 14 on page 179 of your textbook.

Solution:

14. Let D represent the households that have one or more dogs, and let C represent the households that have one of more cats. Let O represent all Prairie
households. $P(D)=37 \% ; P(C)=31 \%$
a) $P(D \cup C)=100 \%-P((D \cup C))$

$$
P(D \cup C)=100 \%-47 \%
$$

$$
P(D \cup C)=53 \%
$$

The probability a Prairie household has a cat or dog is 53%.
b) $P(D \cup C)=P(D)+P(C)-P(D \cap C)$ $53 \%=37 \%+31 \%-P(D \cap C)$ $53 \%=68 \%-P(D \cap C)$
$P(D \cap C)=15 \%$
$P(C \backslash D)=P(C)-P(D \cap C)$
$P(C \backslash D)=31 \%-15 \%$
$P(C \backslash D)=16 \%$
The probability that a Prairie household has one or more cats, but no dogs, is 16%.
c) $P(D \backslash C)=P(D)-P(D \cap C)$
$P(D \backslash C)=37 \%-15 \%$ $P(D \backslash C)=22 \%$
The probability that a Prairie household has one or more dogs, but no cats, is 22%.

Practice Problem:

Complete "Check your Understanding" question 16 on page 179 of your textbook.

Solution:

16. Let S represent damage to the computer's power supply and let C represent damage to other components.
$P(S)=0.15 \%$
$P(C)=0.30 \%$
$P(S \cap C)=0.10 \%$
$P(S \cup C)=P(S)+P(C)-P(S \cap C)$
$P(S \cup C)=0.15 \%+0.30 \%-0.10 \%$
$P(S \cup C)=0.35 \%$
No. e.g., Since the probability of any form of damage is 0.35%, the computer does not need a surge protector.

Practice Problem:

Complete "Check your Understanding" question 18 on page 180 of your textbook.

Solution:

18. e.g., To determine the probability of two events that are not mutually exclusive, you must subtract the probability of both events occurring after adding the probabilities of each event. Example: Female students at a high school may play hockey or soccer. If the probability of a female student playing soccer is 62%, the probability of her playing in goal is 4%, and the probability of her either playing soccer or in goal is 64%, then the probability of her playing in goal at soccer is $62 \%+4 \%-64 \%=2 \%$.
