Math 30-2: U3L1 Teacher Notes

Exploring Probability

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:

Represent and solve counting problems, using a graphic organizer.
Generalize the Fundamental Counting Principle, using inductive reasoning.

Identify and explain assumptions made in solving a counting problem.
*
Solve a contextual counting problem, using the Fundamental Counting Principle, and explain the reasoning.

What is Probability?

Probability is the measure of how likely an event is.

Video
Click here to watch a Youtube video on Probability and Sample Space

Experimental Probability Vs. Theoretical

An experiment is a situation involving chance or probability that leads to results called outcomes. An event is one or more outcomes of an experiment. An outcome is the result of a single trial of an experiment.

A Fair Game is a game in which all the players are equally likely to win.

For Example:

Let's look at tossing a fair coin to make a decision.

The experiment is tossing the coin. The events of tossing of coin is either tossing a head or tossing a tail. The outcome of the tossing a coin is what happens if you toss it. Either you will toss a head or a tail.

And tossing a coin to get heads or tails is a fair game.

One way to find the probability of an event is to conduct an Experiment. We can find the experimental probability of the event by using the formula below.

Experimental Probability		
Experimental probability=$=\frac{\text { Number of event occurrences }}{\text { Total number of trials }}$	$P(A)=\frac{n(A)}{n(T)}$	
	A is the favorable event $n(A)$ is the number of times it occurs $n(T)$ is total number of trials in the experiment	

The following video illustrates how the results of the experimental probability may approach the theoretical probability.

Click the icon to watch a Youtube video on Experimental Probability.

Conducting experiments every time is a bit tedious and time consuming so we use theoretical probability to solve most probability problems.

Theoretical Probability	
Theoretical probability= $\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}$	$P(A)=\frac{n(A)}{n(S)}$
A is the favorable event $n(A)$ is the number of times it occurs $n(S)$ is the total number of outcomes in the sample space	

Probability ranges from 0 which means that event is NEVER going to occur to 1 which means that is CERTAIN to occur.

Practice Problem:
Complete "Check your Understanding" question 1 on page 141 of your textbook.

Solution:

Reverse the rules for Players 1 and 2 on each turn.

Practice Problem:

Complete "Check your Understanding" question 2 on page 141 of your textbook.

Solution:

2. a) Outcome Table:

			MATT	
		H	T	
A	H	HH	HT	
T	H	HT	TT	

$$
\begin{array}{ll}
P(\text { Matt wins })=\frac{2}{4} & P(\text { Pat wins })=\frac{2}{4} \\
P(\text { Matt wins })=\frac{1}{2} & P(\text { Pat wins })=\frac{1}{2}
\end{array}
$$

Each player has an equal chance of winning, so the game is fair.
b) Sample Space:

H	H	H
H	H	T
H	T	H
H	T	T

T	H	H
T	H	T
T	T	H
T	T	T

$P($ Treena wins $)=\frac{1}{8} \quad P($ Leena wins $)=\frac{1}{8} \quad P($ Gina wins $)=\frac{6}{8}$
This game is not fair. Gina has a 6 in 8 chance of winning.
c) Outcome Table:

Die 1

		1	2	3	4	5	6
$\stackrel{N}{\cong}$	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8		10	11	12

$P($ Ann wins $)=\frac{15}{36} \quad P($ Dan wins $)=\frac{15}{36}$
$P($ Ann wins $)=\frac{5}{12} \quad P($ Dan wins $)=\frac{5}{12}$
Each player has an equal chance of winning, so the game is fair.

Practice Problem:
Complete "Check your Understanding" question 3 on page 141 of your textbook.

Solution:

No. e.g., A certain chance is $100 \% .120 \%>100 \%$.

