Math 30-2: U2L4 Teacher Notes

Permutations When Objects are Identical

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:
4.1 Represent and solve counting problems, using a graphic organizer.
4.3 Identify and explain assumptions made in solving a counting problem.
5.2 Determine, with or without technology, the value of a factorial.
5.3 Simplify a numeric or an algebraic fraction that contains factorials in both the numerator and denominator.
5.6 Determine the number of permutations of n elements taken n at a time where some elements are not distinct.
5.7 Explain, using examples, the effect on the total number of permutations of n elements when two or more elements are identical.

Permutations with Some Identical Elements

Can a choice, or item, be repeated or used more than once? The rule of thumb is: It can't be repeated unless you are told otherwise or unless the items that are being arranged, are numbers.

Permutations with Repetition

The number of different permutations of n objects, where there are n_{1} indistinguishable objects of style $1, \mathrm{n}_{2}$ indistinguishable objects of style $2, \ldots$, and n_{k} indistinguishable objects of style k, is ;

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdot \ldots n_{k}!}
$$

Click the icon to view some great notes from RegentsPrep

Example

How many different ways can you rewrite the word LIKE?

Solution:

Let's list all the possible arrangements. There are not identical letters. Therefore,
LIKE LIEK LKIE LKEI LEIK LEKI
ILKE ILEK IELK IEKL IKLE IKEL
KLIE KLEI KILE KIEL KELI KEIL
ELIK ELKI EILK EIKL EKLI EKIL

Therefore there are 24 different permutations ${ }_{4} P_{4}=4$!

Sometimes you will deal with permutations in which some items are identical.
Try it with the word FALL

Keep track of the common letters by using L_{1} and L_{2}

$\mathrm{FAL}_{1} \mathrm{~L}_{2}$	$\mathrm{AFL}_{1} \mathrm{~L}_{2}$	$\mathrm{~L}_{1} \mathrm{AFL}_{2}$	$\mathrm{~L}_{2} \mathrm{AL}_{1} \mathrm{~F}$
$\mathrm{FAL}_{2} \mathrm{~L}_{1}$	$\mathrm{AFL}_{2} \mathrm{~L}_{1}$	$\mathrm{~L}_{1} \mathrm{AL}_{2} \mathrm{~F}$	$\mathrm{~L}_{2} \mathrm{AFL}_{1}$
$\mathrm{FL}_{1} \mathrm{~L}_{2} \mathrm{~A}$	$\mathrm{AL}_{1} \mathrm{~L}_{2} \mathrm{~F}$	$\mathrm{~L}_{1} \mathrm{FL} 2_{2} \mathrm{~A}$	$\mathrm{~L}_{2} \mathrm{~L}_{1} \mathrm{FA}$
$\mathrm{FL}_{2} \mathrm{~L}_{1} \mathrm{~A}$	$\mathrm{AL}_{2} \mathrm{~L}_{1} \mathrm{~F}$	$\mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{FA}$	$\mathrm{L}_{2} \mathrm{FL}_{1} \mathrm{~A}$
$\mathrm{FL}_{1} \mathrm{AL}_{2}$	$\mathrm{AL}_{1} \mathrm{FL}_{2}$	$\mathrm{~L}_{1} \mathrm{FAL}_{2}$	$\mathrm{~L}_{2} \mathrm{~L}_{1} \mathrm{AF}$
$\mathrm{FL}_{2} \mathrm{AL}_{1}$	$\mathrm{AL}_{2} \mathrm{FL}_{1}$	$\mathrm{~L}_{1} \mathrm{~L}_{2} \mathrm{AF}$	$\mathrm{L}_{2} \mathrm{FAL}_{1}$

If the two L's trade places, there are ${ }_{2} \mathrm{P}_{2}=2$! ways that they can be arranged.

Therefore the total number of ways that the letters can be arranged is now expressed as

$$
4!/ 2!=24 / 2=12
$$

Divide the total number of permutations by the number of ways that you can arrange the identical letters

Try it with the word SISS

From previous knowledge we can see that we take

4! / 3! Since 3 ! Is the number of ways that the S can be arranged.
$24 / 6=4$

The number of permutations of a set of \boldsymbol{n} items of which a are identical is

$$
\frac{n!}{a!}
$$

For Example:
How many arrangements are there for the word "bookkeeper".

Solution:

10! Start with the total number of arrangements of 10 letters

10! Now divide out each letter that is similar by the number of similar arrangements.
$3!2!2$! \quad There are 3 e's, 2 o's and 2 k's

For a set of \boldsymbol{n} objects containing a identical elements, \mathbf{b} identical objects, c identical objects, there are

$$
\frac{n!}{a!b!c!\ldots}
$$

For Example

Shawna is looking at all of her cars in the driveway. She has 3 mustangs, 2 motorcycles, 4 corvettes and 3 porsche's. In how many ways can she arrange her cars?

Solution:

There are 12 cars in total, with 3 mustangs, 2 motorcycles, 4 corvettes and 3 porsches.

$$
\frac{12!}{3!2!4!3!}
$$

Shawna can arrange her cars 277200 different ways.

Practice Problem:
Complete "Practising" question 2 on page 104 of your textbook.

Solution:

Let A represent the arrangement of 6 flags:

$$
\begin{aligned}
& A=\frac{6!}{2!2!2!} \\
& A=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \\
& A=6 \cdot 5 \cdot 3 \\
& A=90
\end{aligned}
$$

There are 90 different signals that can be made from the 6 flags hung in a vertical line.

Practice Problem:
Complete "Practising" question 5 on page 105 of your textbook.

Solution:

5. Let C represent the number of ways:
$C=\frac{9!}{2!3!4!}$
$C=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$
$C=9 \cdot 7 \cdot 5 \cdot 4$
$C=1260$
There are 1260 ways that Norm can distribute 1 cookie to each grandchild.

Practice Problem:
Complete "Practising" question 6 on page 105 of your textbook.

Solution:

6. a) Let A represent the number of arrangements:
$A=5$!
$A=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
$A=120$
There are 120 different arrangements that can be made using all the letters.
b) Let A represent the number of arrangements:
$A=\frac{7!}{2!}$
$A=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2!}$
$A=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$
$A=2520$
There are 2520 different arrangements that can be made using all the letters.
c) Let A represent the number of arrangements:
$A=\frac{8!}{2!}$
$A=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2!}$
$A=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$
$A=20160$
There are 20160 different arrangements that can be made using all the letters.
d) Let A represent the number of arrangements:
$A=\frac{12!}{2!3!}$
$A=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$
A $=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
$A=39916800$
There are 39916800 different arrangements that can be made using all the letters.

Practice Problem: (KEY QUESTION)
Complete "Practising" question 7 on page 105 of your textbook.

Solution:

7. a) Let A represent the number of arrangements:
$A=\frac{15!}{5!5!5!}$
$A=\frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$
$A=14 \cdot 13 \cdot 11 \cdot 9 \cdot 7 \cdot 6$
$A=756756$
There are 756756 different ways he can arrange the books on the shelf.
b) Group the sets of 5 together.
$A=3 \cdot 2 \cdot 1$
$A=6$
There are 6 ways he can arrange the books.

Practice Problem:
Complete "Practising" question 8 on page 105 of your textbook.

Solution:

8. e.g., A shish kabob skewer has 4 pieces of beef, 2 pieces of green pepper, and 1 piece each of mushroom and onion. How many different combinations are possible?

Practice Problem:
Complete "Practising" question 9 on page 105 of your textbook.

Solution:

9. a) Let R represent the number of routes:
$R=\frac{9!}{5!4!}$
$R=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$
$R=7 \cdot 6 \cdot 4 \cdot 3$
$R=126$
There are 126 routes travelling from point A to point B if you travel only south or east.

Practice Problem:
Complete "Practising" question 11 on page 105 of your textbook.

Solution:

11. a) e.g., I drew the following diagram to show the number of ways to get to each intersection.

The sum of the numbers on the top right and bottom left corners of each block is equal to the number of routes to the top left corner of each block. There are 560 different routes from A to B, if you travel only north or west.
b) I need to go north twice and west four times, for a total of 6 moves, to travel the first 2 by 4 block of the route. I need to go north once and west once, for a total of 2 moves, to travel the next 1 by 1 block of the route. I need to go north twice and west twice, for a total of 4 moves, to travel the last 2 by 2 block of the route.

Let R represent the number of routes:
$R=\frac{6!}{4!2!} \cdot 2!\cdot \frac{4!}{2!2!}$
$R=\left(\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}\right) \cdot(2 \cdot 1) \cdot\left(\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1}\right)$
$R=(5 \cdot 3) \cdot(2) \cdot(6)$
$R=180$
There are 180 different routes from A to B, if you travel only north or west.

Practice Problem:
Complete "Practising" question 13 on page 106 of your textbook.

Solution:

13. a) Let P represent the number of permutations:
$P=7!$
$P=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
$P=5040$
There are 5040 different arrangements possible for the new totem pole.
b) Let P represent the number of permutations:
$P=\frac{7!}{2!2!}$
$P=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1}$
$P=7 \cdot 6 \cdot 5 \cdot 3 \cdot 2 \cdot 1$
$P=1260$
There are 1260 different arrangements possible for the new totem pole.

Practice Problem:
Complete "Practising" question 15 on page 107 of your textbook.

Solution:

15. a) e.g., I am assuming that the coins of the same denomination are considered identical objects. Let A represent the number of arrangements:

$$
\begin{aligned}
& A=\frac{9!}{4!3!2!} \\
& A=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 2} \\
& A=1260
\end{aligned}
$$

There are 1260 ways the 9 coins can be arranged in a line.

Practice Problem:
Complete "Practising" question 17 on page 107 of your textbook.

Solution:

17. a) Let P represent the number of permutations:
$P=1 \cdot \frac{8!}{3!3!2!} \cdot 1$
$P=1 \cdot \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \cdot 1$
$P=1 \cdot 8 \cdot 7 \cdot 5 \cdot 2 \cdot 1$
$P=560$
There are 560 permutations possible if you must start with A and end with C.
b) e.g., If you start by putting the l's in the first and second positions, and then in the second and third positions, and so on and so forth up until you put them i the ninth and tenth positions, there are 9 different arrangements of the l's just on their own. The number o different arrangements of all the letters in each of these 9 arrangements is the number of ways to organize the other 8 letters. Since the other 8 letters are always the same, the number of permutations of the letters for eacl arrangement of the l's is the same. Let P represent the number of permutations:
$P=9\left(\frac{8!}{3!3!}\right)$
$P=9\left(\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}\right)$
$P=9(8 \cdot 7 \cdot 5 \cdot 4)$
$P=9(1120)$
$P=10080$
There are 10080 permutations possible if the two l's must be together.
