Math 30-2: U5L1 Teacher Notes

Exploring the Graphs of Polynomial Functions

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:

- Describe, orally and in written form, the characteristics of polynomial functions by analyzing their graphs.

Polynomial Functions

Polynomial Function
A polynomial function contains only the operations of multiplication and addition with
real numbers and variables.
$f(x)=5 x^{3}+6 x^{2}-3 x+7$
The function can also be written as
$f(x)+5(x)(x)(x)+6(x)(x)+(-3)(x)+7$

Degree

The highest exponent (on a variable) is called the degree of the polynomial. In Math $30-2$, you will work with degree $0,1,2$, and 3 polynomial functions.

Degree	Name	Example
0	constant	$f(x)=3.5$
1	linear	$f(x)=4 x-1$
2	quadratic	$f(x)=3 x^{2}+6 x-1$
3	cubic	$f(x)=5 x^{3}-4 x^{2}+7 x+3$

Graphs of Constant, Linear, Quadratic and Cubic Functions

In order to do this lesson we need to review a few concepts of graphs of polynomial functions.

- \mathbf{x} - intercept is the point or points at which the graph crosses the x -axis.
- y - intercept is the point at which the graph crosses the y-axis.
- The domain of a function is the set of all possible input values (usually x), which allows the function formula to work.
- The range is the set of all possible output values (usually y), which result from using the function formula.

End Behavior

The end behaviour of a graph describes what happens as the x-values become very large positive or very large negative numbers. In this course, you will typically describe end behaviour by stating the quadrant the graph is in for large negative x-values and large positive x-values.

Turning Points

A turning point occurs when a graph changes from increasing to decreasing or from decreasing to increasing.

In the definition for turning point, describing a function that is decreasing means the curve is falling from left to right. Describing a function that is increasing means the curve is rising from left to right.

This graph contains two turning points. This graph contains one turning point.

Practice Problem:

Complete "Further your Understanding" question 1 on page 277 of your textbook.

Solution:

1. a) This is not a polynomial function since the graph has infinitely many turning points.
b) This is a polynomial function since the graph extends from quadrant II to quadrant I, it has
$1 y$-intercept, 1 turning point and $2 x$-intercepts. It is a quadratic function.
c) This is a polynomial function since the graph extends from quadrant III to quadrant I, it has
$1 y$-intercept, 2 turning points and $3 x$-intercepts. It is a cubic function.
d) This is a polynomial function since the graph extends from quadrant II to quadrant IV, it has
$1 y$-intercept, no turning points and $1 x$-intercept. It is a linear function.
e) This is not a polynomial function because it has no x-intercepts and it is not a constant function.
f) This is not a polynomial function since the domain of this graph is not $\{x \mid x \in \mathrm{R}\}$.

Practice Problem:

Complete "Further your Understanding" question $2 \mathrm{~b}, \mathrm{c}$ and d on page 277 of your textbook.

Solution:

2. b) x-intercepts: $-5,-1$
y-intercept: 2
End behaviour: curve extends from quadrant II to quadrant I
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \geq-2.5, y \in R\}$
Number of turning points: 1

Solution:

c) x-intercepts: $-2,-1,1$
y-intercept: -5
End behaviour: curve extends from quadrant III to quadrant I
Domain: $\{x \mid x \in R\}$
Range: $\{y \mid y \in R\}$
Number of turning points: 2
d) x-intercept: 0.5
y-intercept: 2
End behaviour: line extends from quadrant II to quadrant IV
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \in R\}$
Number of turning points: 0

Practice Problem:

Complete "Further your Understanding" question 3 on page 277 of your textbook.

Solution:

3. a)

Number of x-intercepts: 1
y-intercept: -1
End behaviour: line extends from quadrant III to quadrant I
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \in R\}$
Number of turning points: 0
b)

Number of x-intercepts: 0
y-intercept: 4
End behaviour: curve extends from quadrant II to quadrant I
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \geq 4, y \in R\}$
Number of turning points: 1
c)

Number of x-intercepts: 1
y-intercept: 3
End behaviour: curve extends from quadrant II to quadrant IV
Domain: $\{x \mid x \in R\}$
Range: $\{y \mid y \in R\}$
Number of turning points: 0
d)

Number of x-intercepts: 1
y-intercept: 0
End behaviour: curve extends from quadrant III to quadrant I
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \in R\}$
Number of turning points: 0
e)

Number of x-intercepts: 0
y-intercept: -3
End behaviour: line extends from quadrant III to quadrant IV
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y=-3\}$
Number of turning points: 0
f)

Number of x-intercepts: 2
y-intercept: -7
End behaviour: curve extends from quadrant III to quadrant IV
Domain: $\{x \mid x \in \mathrm{R}\}$
Range: $\{y \mid y \leq 2, y \in R\}$
Number of turning points: 1

Practice Problem:

Complete "Further your Understanding" question 4 on page 277 of your textbook.

Solution:

a)

b)

c)

