Assessment for Learning Questions

Unit 5 Lesson 1: Exploring the Graphs of Polynomial Functions -- (It is extremely important that you read the notes in lesson 1 to review concepts needed to work through these investigations)

1. Investigating the Graphs of Constant Functions Use technology to graph the constant functions below. Determine the following characteristics for each function and complete the chart. From the answers in the chart, fill in the blanks to summarize your findings.

Function	$f(x)=3$	$f(x)=0$	$f(x)=-4$
Graph of Function			
Number of x-intercepts			
y-intercept			
End Behavior			
Domain			
Range			
Number of Turning Points			

Notes:

- Constant functions have \qquad x -intercepts. There is one case where every point is on the x-axis. This happens at \qquad .
- Constant functions have \qquad y-intercepts.
- The End Behavior of Constant functions can be described as
\bullet \qquad .
- Domain: \qquad .

Range: \qquad .

- Number of Turning Points \qquad .

2. Investigating the Graphs of Linear Functions

Use technology to graph the linear functions below. Determine the following characteristics for each function and complete the chart. From the answers in the chart, fill in the blanks to summarize your findings.

Function	$f(x)=3 x+1$	$f(x)=-2 x+3$	$f(x)=\mathbf{1 / 2 x}-\mathbf{4}$
Graph of Function			

Notes:

- Linear functions have \qquad x-intercepts.
- Linear functions have \qquad y-intercepts.
- The End Behavior of Linear functions can be described as
- \qquad .
- Domain: \qquad .

Range: \qquad .

- Number of Turning Points \qquad .

3. Investigating the Graphs of Quadratic Functions

Use technology to graph the quadratic functions below. Determine the following characteristics for each function and complete the chart. From the answers in the chart, fill in the blanks to summarize your findings.

Function	$f(x)=x^{2}+2 x+1$	$f(x)=x^{2}+5 x+6$	$f(x)=-x^{2}-1$
Graph of Function			

Notes:

- Quadratic functions have \qquad , \qquad , or \qquad x-intercepts.
- Quadratic functions have \qquad y-intercepts.
- The End Behavior of Quadratic functions can be described as
\bullet \qquad .
- Domain: \qquad .
- If graph opens up then the Range:
- If graph opens down then the Range: \qquad .
- Number of Turning Points \qquad .

4. Investigating the Graphs of Cubic Functions

Function	$f(x)=-x^{3}-x^{2}+6 x$	$f(x)=x^{3}-3 x-2$	$f(x)=x^{3}+x^{2}+x+1$
Graph of Function			

Notes:

- Cubic functions have \qquad , \qquad , or \qquad x-intercepts.
- Cubic functions have \qquad y-intercepts.
- The End Behavior of Cubic functions can be described as
- \qquad .
- Domain: \qquad .
- Range: \qquad .
- Number of Turning Points \qquad .

Please check your answers to the Notes section with the chart on Page 276 of your textbook.

Complete Workbook Question: Page 117 \#1

