Writing Equivalent Rational Expressions Algebra 1

We know from middle school mathematics that two different fractions can have the same value when reduced. These are called **equivalent fractions**. The keys to writing and recognizing equivalent fractions are the following two properties of real numbers:

 $\frac{a}{a} = 1$ as long as $a \neq 0$ and $b \cdot 1 = b$

Exercise #1: Write three fractions that are equivalent to $\frac{3}{2}$ by multiplying by one in various forms.

Exercise #2: Consider the rational expression $\frac{x+2}{3}$.

- (a) Write an equivalent rational expression by multiplying by $\frac{2}{2}$.
- (b) Write an equivalent rational expression by multiplying by $\frac{x}{x}$.
- (c) Verify that these expressions are equivalent by entering the answer that you wrote in (a) into Y_1 and your answer to (b) in Y_2 into your calculator. Fill in the table for selected values of x.

x	\mathbf{Y}_1	Y ₂
1		
4		
7		
10		

Exercise #3: Which of the following is *not* equivalent to $\frac{x-6}{x+3}$?

(1)
$$\frac{2x-12}{2x+6}$$
 (3) $\frac{3x-6}{3x+3}$

(2)
$$\frac{x^2 - 6x}{x^2 + 3x}$$
 (4) $\frac{-x + 6}{-x - 3}$

Algebra 1, Unit #7 – Rational Algebra – L2 The Arlington Algebra Project, LaGrangeville, NY 12540 <u>Simplifying Rational Expressions with Monomial Denominators</u> – Often rational expressions contain monomial denominators (only one term in the denominator). Simplifying these types of rational expressions is an important skill.

Exercise #4: Consider the rational expression
$$\frac{2x^5y^2}{6x^3y^5}$$
.

- (a) Write this expression as the product of two fractions, one of which is equal to one.
- (b) Write this rational expression in simplest terms.

Exercise **#5**: Using a process similar to what was used in *Exercise* **#4**, simplify each of the following rational expressions by writing it as the product of two fractions, one of which is equivalent to one.

(a)
$$\frac{4x^6}{12x^2}$$
 (b) $\frac{10x^3}{25x^8}$ (c) $\frac{8x^5y^2}{12x^3y^7}$

We would, of course, like to do this simplifying without writing out these two fractions. You should be able to use the exponent law for division to simplify these more quickly.

Exercise **#6:** Simplify each of the following.

(a)
$$\frac{a^3 b^6 c}{a^2 b^4 c^3}$$
 (b) $\frac{12 x^3 y^2}{18 x y^4}$ (c) $\frac{6 x^3 y^{10}}{2 x^9 y^2}$

Because division, like multiplication, distributes over addition and subtraction we can also simplify rational expressions that have polynomials in the numerator.

Exercise **#7**: Simplify each of the following.

(a)
$$\frac{6c^3 - 12c^2}{3c}$$
 (b) $\frac{10x^3 + 25x^2 + 30x}{5x}$ (c) $\frac{4x^2y^5 - 2x^6y^3}{2x^2y^2}$

Writing Equivalent Rational Expressions Algebra 1 Homework

Skills

- 1. Which of the following is *not* equivalent to the fraction $\frac{5}{2}$?
 - (1) $\frac{10}{6}$ (3) $\frac{20}{12}$
 - (2) $\frac{-5}{-3}$ (4) $\frac{7}{5}$

2. Which of the following is equivalent to $\frac{x+2}{x-1}$?

- (1) $\frac{3x+2}{3x-1}$ (3) $\frac{4x+8}{4x-4}$
- (2) $\frac{x+10}{x-5}$ (4) $\frac{x^2+2}{x^2-1}$
- 3. Written in simplest form the fraction $\frac{-6x^3y^2}{12xy^5}$ is equal to
 - (1) $\frac{-x^2}{2y^3}$ (3) $-2x^2y^3$
 - (2) $\frac{2y^3}{x^2}$ (4) $-\frac{2x^2}{y^3}$
- 4. Simplify each of the following rational expressions involving only monomials.
- (a) $\frac{a^{10}}{a^4}$ (b) $\frac{-28x^3}{4x^9}$ (c) $\frac{18x^{12}}{6x^3}$ (d) $\frac{12x^4}{3x}$

(e)
$$\frac{4a^2b^5}{6a^4b^{10}}$$
 (f) $\frac{27x^3y^5}{-9x^7y^2}$ (g) $\frac{10a^2b^5c}{25a^7b^3c^8}$ (h) $\frac{10a^6b^9}{4a^2b^3}$

- 5. Which of the following is equivalent to $\frac{30x^6 15x^4}{5x^2}$?
 - (1) $6x^3 3x^2$ (3) $6x^4 3x^2$ (2) $4x^4 - 3x^2$ (4) $4x^3 - 3x$
- 6. Simplify each of the following rational expressions that contain a polynomial numerator and a monomial denominator.

(a)
$$\frac{32x-20}{4}$$
 (b) $\frac{8x^3-4x^2}{2x}$ (c) $\frac{xy-x}{x}$

(d)
$$\frac{8x^2 - 12y^2}{4}$$
 (e) $\frac{32x^3z^4 - 40xz^2}{-8xz}$ (f) $\frac{30n^3 - 24n^2 + 18n}{6n}$

(g)
$$\frac{20p^3 - 15p^2 + 25p}{5p}$$
 (h) $\frac{18x^6 + 9x^5 - 15x^4}{3x^2}$ (i) $\frac{6x^3y^5 - 8x^2y^4 + 2xy^5}{2xy}$

Reasoning

- 7. Consider the rational expression $\frac{4x^2 + 8x}{2x}$.
- (a) Write the expression in simplest form.
- (b) Enter both the original expression and your answer from part (a) into Y_1 and Y_2 on your calculator and fill in the table.
- (c) Why are the outputs to the two rational expressions different at x = 0?

x	Y ₁	\mathbf{Y}_2
-2		
-1		
0		
1		
2		