\qquad

Writing Equivalent Rational Expressions Algebra 1

We know from middle school mathematics that two different fractions can have the same value when reduced. These are called equivalent fractions. The keys to writing and recognizing equivalent fractions are the following two properties of real numbers:

$$
\frac{a}{a}=1 \text { as long as } a \neq 0 \text { and } b \cdot 1=b
$$

Exercise \#1: Write three fractions that are equivalent to $\frac{3}{2}$ by multiplying by one in various forms.

Exercise \#2: Consider the rational expression $\frac{x+2}{3}$.
(a) Write an equivalent rational expression by multiplying by $\frac{2}{2}$.
(b) Write an equivalent rational expression by multiplying by $\frac{x}{x}$.
(c) Verify that these expressions are equivalent by entering the answer that you wrote in (a) into Y_{1} and your answer to (b) in Y_{2} into your calculator. Fill in the table for selected values of x.

x	Y_{1}	Y_{2}
1		
4		
7		
10		

Exercise \#3: Which of the following is not equivalent to $\frac{x-6}{x+3}$?
(1) $\frac{2 x-12}{2 x+6}$
(3) $\frac{3 x-6}{3 x+3}$
(2) $\frac{x^{2}-6 x}{x^{2}+3 x}$
(4) $\frac{-x+6}{-x-3}$

Simplifying Rational Expressions with Monomial Denominators - Often rational expressions contain monomial denominators (only one term in the denominator). Simplifying these types of rational expressions is an important skill.

Exercise \#4: Consider the rational expression $\frac{2 x^{5} y^{2}}{6 x^{3} y^{5}}$.
(a) Write this expression as the product of two fractions, one of which is equal to one.
(b) Write this rational expression in simplest terms.

Exercise \#5: Using a process similar to what was used in Exercise \#4, simplify each of the following rational expressions by writing it as the product of two fractions, one of which is equivalent to one.
(a) $\frac{4 x^{6}}{12 x^{2}}$
(b) $\frac{10 x^{3}}{25 x^{8}}$
(c) $\frac{8 x^{5} y^{2}}{12 x^{3} y^{7}}$

We would, of course, like to do this simplifying without writing out these two fractions. You should be able to use the exponent law for division to simplify these more quickly.

Exercise \#6: Simplify each of the following.
(a) $\frac{a^{3} b^{6} c}{a^{2} b^{4} c^{3}}$
(b) $\frac{12 x^{3} y^{2}}{18 x y^{4}}$
(c) $\frac{6 x^{3} y^{10}}{2 x^{9} y^{2}}$

Because division, like multiplication, distributes over addition and subtraction we can also simplify rational expressions that have polynomials in the numerator.

Exercise \#7: Simplify each of the following.
(a) $\frac{6 c^{3}-12 c^{2}}{3 c}$
(b) $\frac{10 x^{3}+25 x^{2}+30 x}{5 x}$
(c) $\frac{4 x^{2} y^{5}-2 x^{6} y^{3}}{2 x^{2} y^{2}}$
\qquad

Writing Equivalent Rational Expressions Algebra 1 Homework

Skills

1. Which of the following is not equivalent to the fraction $\frac{5}{3}$?
(1) $\frac{10}{6}$
(3) $\frac{20}{12}$
(2) $\frac{-5}{-3}$
(4) $\frac{7}{5}$
2. Which of the following is equivalent to $\frac{x+2}{x-1}$?
(1) $\frac{3 x+2}{3 x-1}$
(3) $\frac{4 x+8}{4 x-4}$
(2) $\frac{x+10}{x-5}$
(4) $\frac{x^{2}+2}{x^{2}-1}$
3. Written in simplest form the fraction $\frac{-6 x^{3} y^{2}}{12 x y^{5}}$ is equal to
(1) $\frac{-x^{2}}{2 y^{3}}$
(3) $-2 x^{2} y^{3}$
(2) $\frac{2 y^{3}}{x^{2}}$
(4) $-\frac{2 x^{2}}{y^{3}}$
4. Simplify each of the following rational expressions involving only monomials.
(a) $\frac{a^{10}}{a^{4}}$
(b) $\frac{-28 x^{3}}{4 x^{9}}$
(c) $\frac{18 x^{12}}{6 x^{3}}$
(d) $\frac{12 x^{4}}{3 x}$
(e) $\frac{4 a^{2} b^{5}}{6 a^{4} b^{10}}$
(f) $\frac{27 x^{3} y^{5}}{-9 x^{7} y^{2}}$
(g) $\frac{10 a^{2} b^{5} c}{25 a^{7} b^{3} c^{8}}$
(h) $\frac{10 a^{6} b^{9}}{4 a^{2} b^{3}}$
5. Which of the following is equivalent to $\frac{30 x^{6}-15 x^{4}}{5 x^{2}}$?
(1) $6 x^{3}-3 x^{2}$
(3) $6 x^{4}-3 x^{2}$
(2) $4 x^{4}-3 x^{2}$
(4) $4 x^{3}-3 x$
6. Simplify each of the following rational expressions that contain a polynomial numerator and a monomial denominator.
(a) $\frac{32 x-20}{4}$
(b) $\frac{8 x^{3}-4 x^{2}}{2 x}$
(c) $\frac{x y-x}{x}$
(d) $\frac{8 x^{2}-12 y^{2}}{4}$
(e) $\frac{32 x^{3} z^{4}-40 x z^{2}}{-8 x z}$
(f) $\frac{30 n^{3}-24 n^{2}+18 n}{6 n}$
(g) $\frac{20 p^{3}-15 p^{2}+25 p}{5 p}$
(h) $\frac{18 x^{6}+9 x^{5}-15 x^{4}}{3 x^{2}}$
(i) $\frac{6 x^{3} y^{5}-8 x^{2} y^{4}+2 x y^{5}}{2 x y}$

Reasoning

7. Consider the rational expression $\frac{4 x^{2}+8 x}{2 x}$.
(a) Write the expression in simplest form.
(b) Enter both the original expression and your answer from part (a) into \mathbf{Y}_{1} and $\mathbf{Y}_{\mathbf{2}}$ on your calculator and fill in the table.
(c) Why are the outputs to the two rational expressions different at $x=0$?

x	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$
-2		
-1		
0		
1		
2		

