Math 30-2: U4L1 Teacher Notes

Equivalent Rational Expressions

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:
compare the strategies for writing equivalent forms of rational expressions to the strategies for writing equivalent forms of rational numbers
determine the non-permissible values for a rational expression and explain why such values are non-permissible determine equivalent rational expressions to given rational expressions and explain why the non-permissible values of both are the same
simplify a rational expression and identify, correct, and explain errors in the simplification of a rational expression

What is Rational Expression

Recall that the definition of a rational number is a real number that can be expressed in the form $\frac{a}{b}$
where a and b are integers and $b \neq 0$.

Rational expression

A rational expression has a similar definition. A rational expression can be expressed in the form of $\frac{a}{b}$, where a and b are polynomials and $b \neq 0$.

Viceo Click the icon to watch a LearnAlberta video Identifying Rational Expressions

Now that you have the definition of a rational expression, work through Identifying Rational Expressions to help you identify a rational expression.

Example:

Which of the following expressions are rational? Explain.

1. $\frac{1}{1-x^{2}}$
2. $\frac{2-\sqrt{x}}{4-x}$
3. $\frac{1-x}{1+\frac{1}{x}}$
4. $3 x$

Solution:

The textbook defines a rational expression as a fraction that has a polynomial in both the numerator and denominator. To determine whether an expression is in fact a rational expression, examine both the numerator and denominator, checking to see if both are polynomials.

1. This is a rational expression because the numerator and denominator are polynomials. (Remember that a constant can also be classified as a polynomial.)
2. This is not a rational expression because the numerator is not a polynomial (due to the square root).
3. This is not a rational expression because the denominator is not a polynomial (due to the $\frac{1}{x}$).
4. This is a rational expression because it can be written as $\frac{3 x}{1}$, and the numerator and denominator are polynomials.

Why are Rational Expressions Undefined for Certain Values?

A rational expression is not defined when its denominator is 0 . Therefore, any value of the variable that would result in a denominator of 0 is called a non-permissible value. These nonpermissible values are also called restrictions.

Video
 Click the icon to watch a YouTube video Non-permissible Values

Example:

Determine the non-permissible values.
a. $\frac{x-3}{23}$
b. $\frac{23}{x-3}$
c. $\frac{2 x+1}{x^{2}+1}$
d. $\frac{2 x+1}{x^{2}-4}$

Solution:

Non-permissible values are found by determining the values that will make the denominator equal to zero.
a. $\frac{x-3}{23}$

In this case, the denominator will never be 0 , so there are no non-permissible values.
b. $\frac{23}{x-3}$

The denominator will equal 0 when $x=3$.
c. $\frac{2 x+1}{x^{2}+1}$

In this case, solving for a 0 denominator results in the following equation:

$$
\begin{aligned}
x^{2}+1 & =0 \\
x^{2} & =-1
\end{aligned}
$$

A squared number can never be negative, so this equation has no solutions. Therefore, there are no non-permissible values.
d. $\frac{2 x+1}{x^{2}-4}$

To find the non-permissible values, first factor the denominator; then determine what will make each factor equal to 0 . Solving for a 0 denominator results in the following equation:

$$
\begin{aligned}
x^{2}-4 & =0 \\
(x-2)(x+2) & =0 \\
x & =-2,2
\end{aligned}
$$

Therefore, the non-permissible values are -2 and 2 .

How Do We Create Equivalent Rational Expressions?

What happens to a number if you multiply it by 1 ? If you said that the number remains unchanged, you are absolutely correct. This property of 1 is critical in determining equivalent expressions in mathematics.

The fractions $2 / 3,4 / 6,6 / 9$ are all equivalent since:

We can create a equivalent Rational Expression by multiplying the expression by using the same Property of 1. Look at the example below to help you with this concept.

Example:

Find two equivalent expression to $\frac{2 x}{x-2}$

Solution:

Use the Property of $1 \quad \frac{2 x}{x-2} \times \frac{10}{10}=\frac{20 x}{10(x-2)}=\frac{20 x}{10 x-20}$
Remember you can chose whatever 1 you want, as long as you follow the proper rules of multiplying two fractions together. Lets find another equivalent fraction using the Property of 1 with a variable.

$$
\frac{2 x}{x-2} \times \sqrt{\mathbf{X}}=\frac{(x)(2 x)}{x(x-2)}=\frac{2 x^{2}}{x^{2}-2 x}
$$

You can even chose a binomial for your 1.

$$
\frac{2 x}{x-2} \times \sqrt{\frac{\mathrm{x}+1}{\mathrm{x}+1}}=\frac{2 x(x+1)}{(x-2)(x+1)}
$$

Click the icon to link to another lesson from PurpleMath on Equivalent Rational expressions

Practice Problem:
Complete "Check your Understanding" question 1 on page 222 of your textbook.

Solution:

1. a) i) $\frac{16 x^{3}}{10 x}=\frac{2 x\left(8 x^{2}\right)}{2 x(5)}$

$$
\frac{16 x^{3}}{10 x}=\frac{8 x^{2}}{5}, x \neq 0
$$

ii) $\frac{2 x+6}{4}=\frac{2(x+3)}{2(2)}$
$\frac{2 x+6}{4}=\frac{x+3}{2}$
iii) $\frac{x-2}{4 x^{2}}=\frac{x-2}{4 x^{2}} \cdot \frac{x}{x}$
$\frac{x-2}{4 x^{2}}=\frac{x^{2}-2 x}{4 x^{3}}, x \neq 0$
iv) $\frac{x-3}{x-1}=\frac{x-3}{x-1} \cdot \frac{2}{2}$
$\frac{x-3}{x-1}=\frac{2 x-6}{2 x-2}, x \neq 1$
b) i) Denominator:
$10 x=0$
$x=0$
The non-permissible value for this pair of equivalent expressions is $x=0$.
ii) Denominator: $4=0$

This pair of expressions has no non-permissible values.
iii) Denominator:
$4 x^{2}=0$
$x=0$
The non-permissible value for this pair of equivalent expressions is $x=0$.
iv) Denominator:
$x-1=0$
$x=1$
The non-permissible value for this pair of equivalent expressions is $x=1$.
c) e.g., ii) substitute $x=2$
$\frac{2(2)+6}{4}=\frac{5}{2}, \frac{(2)+3}{2}=\frac{5}{2}$
Both expressions produce the same result for this value of x.

Practice Problem:

Complete "Check your Understanding" question 2 on page 222 of your textbook.

Solution:

2. a) Let t represent the time of the journey, in hours.

Speed $=\frac{450}{t} \mathrm{~km} / \mathrm{h}, t>0$
b) Let V represent the total volume melted, in cubic metres.
Volume $=\frac{V}{15} \mathrm{~m}^{3} / \mathrm{yr}, V \geq 0$

Practice Problem:

Complete "Check your Understanding" question 3 on page 223 of your textbook.

Solution:

3. a) Denominator:

$-5-x=0$

$$
x=-5
$$

The non-permissible value for this pair of equivalent expressions is $x=-5$.

$$
\begin{aligned}
& \frac{2-7 x}{-5-x}=\frac{2-7 x}{-5-x} \cdot \frac{-1}{-1} \\
& \frac{2-7 x}{-5-x}=\frac{7 x-2}{x+5}, x \neq-5 \\
& \frac{2-7 x}{-5-x}=\frac{2-7 x}{-5-x} \cdot \frac{2}{2} \\
& \frac{2-7 x}{-5-x}=\frac{4-14 x}{-10-2 x}, x \neq-5
\end{aligned}
$$

b) Denominator:

$$
a^{2}+a=0
$$

$a(a+1)=0$
$a=0$ or $a+1=0$
$a=0$ or $\quad a=-1$
The non-permissible values for this pair of equivalent expressions are $a=0$ and $a=-1$.
$\frac{4 a^{2}}{a^{2}+a}=\frac{a(4 a)}{a(a+1)}$
$\frac{4 a^{2}}{a^{2}+a}=\frac{4 a}{a+1}, a \neq 0,-1$
$\frac{4 a^{2}}{a^{2}+a}=\frac{4 a^{2}}{a^{2}+a} \cdot \frac{3}{3}$
$\frac{4 a^{2}}{a^{2}+a}=\frac{12 a^{2}}{3 a^{2}+3 a}, a \neq 0,-1$
c) Denominator:
$3 t^{2}-t=0$
$t(3 t-1)=0$
$t=0$ or $3 t-1=0$
$t=0$ or $\quad t=\frac{1}{3}$
The non-permissible values for this pair of equivalent
expressions are $t=0$ and $t=\frac{1}{3}$.

$$
\begin{aligned}
& \frac{4 t^{3}}{3 t^{2}-t}=\frac{t\left(4 t^{2}\right)}{t(3 t-1)} \\
& \frac{4 t^{3}}{3 t^{2}-t}=\frac{4 t^{2}}{3 t-1}, t \neq 0, \frac{1}{3}
\end{aligned}
$$

$$
\frac{4 t^{3}}{3 t^{2}-t}=\frac{4 t^{3}}{3 t^{2}-t} \cdot \frac{-t}{-t}
$$

$$
\frac{4 t^{3}}{3 t^{2}-t}=\frac{-4 t^{4}}{t^{2}-3 t^{3}}, t \neq 0, \frac{1}{3}
$$

Practice Problem:

Complete "Check your Understanding" question 4 on page 223 of your textbook.

Solution:

4. A. Non-permissible value:
$\begin{aligned} 16 a^{2} & =0 \\ a & =0\end{aligned}$
D. Non-permissible value:
$64 a^{3}=0$
$a=0$
Both expressions have the same non-permissible value.
Expression $\mathrm{A}=\frac{4 a-4}{16 a^{2}}, a \neq 0$
Expression $\mathrm{A}=\frac{4 a-4}{16 a^{2}} \cdot \frac{4 a}{4 a}$
Expression $A=\frac{16 a^{2}-16 a}{64 a^{3}}, a \neq 0$
Expression $\mathrm{A}=$ Expression D
Therefore, expressions A and D are equivalent.
B. Non-permissible value:
$32 a^{2}=0$
$a=0$
D. Non-permissible value:
$-128 a^{2}=0$
$a=0$
Both expressions have the same non-permissible value.
Expression $B=\frac{2-2 a}{32 a^{2}}, a \neq 0$
Expression $B=\frac{2-2 a}{32 a^{2}} \cdot \frac{-4}{-4}$
Expression $\mathrm{B}=\frac{8 a-8}{-128 a^{2}}, a \neq 0$
Expression B = Expression C
Therefore, expressions B and C are equivalent.

Practice Problem:

Complete "Check your Understanding" question 9 on page 223 of your textbook.

Solution:

9. a) i) Denominator:
$x+5=0$
$x=-5$
The non-permissible value for this expression is $x=-5$.
ii) Denominator:

$$
\begin{aligned}
-3 x-15 & =0 \\
-3 x & =15 \\
x & =-5
\end{aligned}
$$

The non-permissible value for this expression is $x=-5$.
iii) Denominator:
$2 x^{3}+10 x^{2}=0$
$2 x^{2}(x+5)=0$
$2 x^{2}=0$ or $x+5=0$
$x=0$ or $\quad x=-5$
The non-permissible values for this expression are $x=0$ and $x=-5$.
b) These expressions are not equivalent, because expression iii) has an additional non-permissible value.

Practice Problem:

Complete "Check your Understanding" question 17 on page 224 of your textbook.

Solution:

17. a) $\frac{13}{2 x-5 x^{2}}, x \neq 0, \frac{2}{5}$
b) $\frac{3 x}{12 x-6 x^{2}}=\frac{3(x)}{3\left(4 x-2 x^{2}\right)}, x \neq 0,2$
$\frac{3 x}{12 x-6 x^{2}}=\frac{x}{4 x-2 x^{2}}, x \neq 0,2$
$\frac{3 x}{12 x-6 x^{2}}=\frac{x(3)}{x(12-6 x)}, x \neq 0,2$
$\frac{3 x}{12 x-6 x^{2}}=\frac{3}{12-6 x}, x \neq 0,2$
