Math 30-2: U4L3 Teacher Notes **Multiplying and Dividing Rational Expressions**

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:

Compare the strategies for performing a given operation on rational expressions to the strategies for performing the same operation on rational numbers

Determine the non-permissible values for a rational expression

A Determine, in simplified form, the product or quotient of two rational expressions

How do We Multiply Rational Numbers (Fractions)

There are 3 steps to mulitplying fractions:

- 1. Multiply the top numbers (numerators)
- 2. Multiply the bottom numbers (denominators)
- 2. Simplify the fraction if needed (reduce to lowest terms)

Multiplying Rational Expressions with Monomials

Multiplying Rational expressions is very similar to multiplying rational numbers. We do have to to take into consideration our non-permissible values.

Multiplying Rational Expressions with Binomials

When we multiply binomials together we follow a similar procedure.

- **1.** State the non-permissible values
- 2. Factor all numerators and denominators completely.
- **3.** Divide numerators and denominators by common factors by looking for properties of 1.
- **4.** Multiply the remaining factor

How do I Divide Rational Numbers (Fractions)?

Step 1: Change the division symbol to multiplication. Change the right-hand fraction (the divisor) to its reciprocal. ("Flip it.")

Step 2: Multiply the numerators and denominators separately; then simplify (reduce) wherever possible.

Dividing Rational Expressions

Now that you have explored multiplication of rational expressions, you will focus on division. Recall that dividing rational numbers is a process that involves multiplying the first number by the reciprocal of the second number.

One concept we have to be very careful of is stating the non-permissible values of the expression. When finding the non-permissible values of the rational expression when we are dividing is a bit more complex since we have two divisions to deal with.

For division, remember to consider both the numerator and the denominator of the divisor (the second fraction).

Solution: b) $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{3(2a)}{3(3)} \div \frac{4a^2}{3}, a \neq 0$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{2a}{3} \div \frac{4a^2}{3}$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{2a}{3} \div \frac{3}{4a^2}$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{6a}{12a^2}$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{6a}{6a(2a)}$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{6a}{6a(2a)}$ $\frac{6a}{9} \div \frac{4a^2}{3} = \frac{1}{2a}, a \neq 0$ c) $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = \frac{9y^4}{4y^3} \cdot \frac{20}{y}, y \neq 0$ $(3y^2)^2 \cdot \frac{20}{2y} = \frac{9y}{4y^3} \cdot \frac{20}{y}$ $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = \frac{9y}{4y^3} \cdot \frac{20}{y}$ $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = \frac{9y}{4y^2} \cdot \frac{20}{y}$ $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = \frac{180y}{4y}$ $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = \frac{4y(45)}{4y}$ $\frac{(3y^2)^2}{4y^3} \cdot \frac{20}{y} = 45, y \neq 0$

d)
$$-\frac{15m}{20m^2} \div \frac{3}{14m} = -\frac{5m(3)}{5m(4m)} \div \frac{3}{14m}, m \neq 0$$

 $-\frac{15m}{20m^2} \div \frac{3}{14m} = \frac{-3}{4m} \div \frac{3}{14m}$
 $-\frac{15m}{20m^2} \div \frac{3}{14m} = \frac{-3}{4m} \cdot \frac{14m}{3}$
 $-\frac{15m}{20m^2} \div \frac{3}{14m} = \frac{-42m}{12m}$
 $-\frac{15m}{20m^2} \div \frac{3}{14m} = \frac{6m(-7)}{6m(2)}$
 $-\frac{15m}{20m^2} \div \frac{3}{14m} = \frac{-7}{2}, m \neq 0$

Practice Problem:

Complete "Check your Understanding" question 5 on page 238 of your textbook.

5. a)
$$\frac{3x(2x-1)}{7x^{2}(x-6)} \cdot \frac{14(6-x)}{8x^{3}}$$

$$= \frac{x(3)(2x-1)}{x(7x)(x-6)} \cdot \frac{2(7)(6-x)}{2(4x^{3})}, x \neq 0, 6$$

$$= \frac{3(2x-1)}{7x(x-6)} \cdot \frac{7(6-x)}{4x^{3}}$$

$$= \frac{3(2x-1)}{7x(x-6)} \cdot \frac{7(-1)(x-6)}{4x^{3}}$$

$$= \frac{-21(2x-1)(x-6)}{28x^{4}(x-6)}$$

$$= \frac{-21(2x-1)(x-6)}{7(x-6)(4x^{4})}$$

$$= \frac{-3(2x-1)}{4x^{4}}, x \neq 0, 6$$

b)
$$\frac{4b^{2}(2b+1)}{2b+3} \div \frac{10(1+2b)}{b+3}$$

$$= \frac{4b^{2}(2b+1)}{2b+3} \cdot \frac{b+3}{10(1+2b)}, b \neq -3, \frac{-3}{2}, \frac{-1}{2}$$

$$= \frac{2(2b+1)(2b^{2})(b+3)}{2(2b+1)(5)(2b+3)}$$

$$= \frac{2b^{2}(b+3)}{5(2b+3)}, b \neq -3, \frac{-3}{2}, \frac{-1}{2}$$

Practice Problem:

Complete "Check your Understanding" question 6 on page 239 of your textbook.

6. a)
$$\frac{a^2 + 3a}{25} \cdot \frac{15a^3}{9a + 3a^2}$$

 $= \frac{a(a+3)}{25} \cdot \frac{3a(5a^2)}{3a(3+a)}, a \neq -3,0$
 $= \frac{a(a+3)}{25} \cdot \frac{5a^2}{a+3}$
 $= \frac{5a^3(a+3)}{25(a+3)}$
 $= \frac{5a^3(a+3)}{5(5)(a+3)}$
 $= \frac{a^3}{5}, a \neq -3,0$
b) $\frac{y^4}{5y^2 - 2y^3} \cdot \frac{2y^3 - 5y^2}{y^3}$
 $= \frac{y^2(2y-5)}{y^2(5-2y)} \cdot \frac{y^2(2y-5)}{y^2(y)}, y \neq 0, \frac{5}{2}$
 $= \frac{y^2(2y-5)}{y(5-2y)}$
 $= \frac{y(-y)(5-2y)}{y(5-2y)}$
 $= -y, y \neq 0, \frac{5}{2}$

Solution: (c) $\frac{x+2x^2}{1-x} \cdot \frac{x^2-x}{2x^4+x^3}$ $= \frac{x(1+2x)}{1-x} \cdot \frac{x(x-1)}{x(x^2)(2x+1)}, x \neq \frac{-1}{2}, 0$ $= \frac{x(1+2x)}{1-x} \cdot \frac{x-1}{x^2(2x+1)}$ $= \frac{x(1+2x)(x-1)}{1-x} \cdot \frac{x^2-1}{x^2(1-x)(2x+1)}$ $= \frac{x(2x+1)(-1)(1-x)}{x(x)(1-x)(2x+1)}$ $= \frac{-1}{x}, x \neq \frac{-1}{2}, 0$ $\frac{a^2-9}{3a+9} \cdot \frac{15a^3}{12a^2-36a}$ $= \frac{(a+3)(a-3)}{3(a+3)} \cdot \frac{3a(5a^2)}{3a(4)(a-3)}, a \neq -3, 0, 3$

Practice Problem: (KEY QUESTION)

Complete "Check your Understanding" question 9 on page 239 of your textbook.

9.
$$\frac{5a^{2}}{10a^{3}-5a^{2}} \cdot \frac{3a-6}{a+2} = \frac{5a^{2}}{5a^{2}(2a-1)} \cdot \frac{3(a-2)}{a+2}, a \neq -2, 0, \frac{1}{2}$$
$$\frac{5a^{2}}{10a^{3}-5a^{2}} \cdot \frac{3a-6}{a+2} = \frac{1}{2a-1} \cdot \frac{3(a-2)}{a+2}$$
$$\frac{5a^{2}}{10a^{3}-5a^{2}} \cdot \frac{3a-6}{a+2} = \frac{3(a-2)}{(2a-1)(a+2)}, a \neq -2, 0, \frac{1}{2}$$

Practice Problem:

Complete "Check your Understanding" question 14 on page 239 of your textbook.

Solution:

14. e.g., Two expressions with this product are

$$\frac{y+2}{4y} \text{ and } \frac{y^2}{3y^2+6y}$$

$$\frac{y+2}{4y} \cdot \frac{y^2}{3y^2+6y} = \frac{y+2}{4y} \cdot \frac{y(y)}{y(3)(y+2)}, y \neq -2, 0$$

$$\frac{y+2}{4y} \cdot \frac{y^2}{3y^2+6y} = \frac{y+2}{4y} \cdot \frac{y}{3(y+2)}$$

$$\frac{y+2}{4y} \cdot \frac{y^2}{3y^2+6y} = \frac{y(y+2)}{12y(y+2)}$$

$$\frac{y+2}{4y} \cdot \frac{y^2}{3y^2+6y} = \frac{1}{12}, y \neq -2, 0$$

Either or both of the expressions are not defined at the non-permissible values, so their product cannot be defined at those values either.