Math 30-2: U7L2 Teacher Notes Evaluating Logarithmic Functions

Key Math Learnings:

By the end of this lesson, you will learn the following concepts:

- Express a logarithmic equation as an exponential equation and vice versa.
- Determine the value of a logarithmic expression without technology.
- Determine the approximate value of a logarithmic expression without technology.
- Solve problems that involve logarithmic scales, such as the Richter scale and pH scale.

Logarithmic Functions are Equivalent to Exponential Functions

From the first lesson, we learned that the **logarithm** of a number is the **exponent** by which another fixed value, the base, has to be raised to produce that number.

For example, the logarithm of 1000 to base 10 is 3, because $10^3 = 1000$

Therefore, the logarithmic function is equivalent to an exponential function.

 $y = \log_b x$ is equivalent to $x = b^y$

Remember that the common logarithmic function has a base of 10, therefore:

 $y = \log x$ is equivalent to $x = 10^y$

And that the natural logarithmic function has a base of *e*, therefore:

 $y = \ln x$ is equivalent to $x = e^y$

Evaluating Logarithmic Functions

The value of a logarithm can be determined in one of the following ways:

- Set the logarithmic expression equal to y, and write the equivalent exponential form. Then determine the exponent to which the base must be raised to get the required number.
- If the base of logarithm is 10 or *e*, you can use a scientific or graph calculator.

Does the Logarithm of a Negative Number Exist?

The logarithm of a negative number does not exist.

Example:

Calculate $\log_5(-25)$

Solution:

Write the logarithm as an exponent.

$5^{x} = -25$

There is no exponent that will give you a negative answer. This logarithm is UNDEFINED. Remember that the logarithmic function has a domain of x > 0, where $x \in R$

Complete "Check your Understanding" question 5 on page of your textbook.

```
5. a) I estimate that 2 < y < 3 since 10^2 = 100 is less
than 250 and 10^3 = 1000 is greater than 250.
250 = 10^y
y = \log 250
y = 2.397...
It is approximately 2.4.
b) I estimate that 2 < y < 3 since e^2 < 9 < e^3.
9 = e^y
y = \ln 9
y = 2.197...
It is approximately 2.2.
```


Complete "Check your Understanding" question 6.

6. a)
$$\frac{1}{9} = 3^{y}$$

 $y = \log_{3} \frac{1}{9}$
b) 1 000 000 = 2^{y}
 $y = \log_{2} 1 000 000$
c) 5 = 7^{y}
 $y = \log_{7} 5$
d) $x = a^{y}$
 $y = \log_{a} x$

Complete "Check your Understanding" question 7.

7. a)
$$x = \log_{\frac{1}{2}} 100$$

 $\left(\frac{1}{2}\right)^{x} = 100$
b) $x = \log_{20} 40$
 $20^{x} = 40$
c) $x = \ln 0.25$
 $e^{x} = 0.25$
d) $x = \ln 1000$
 $e^{x} = 1000$

Complete "Check your Understanding" question 8.

```
8. a) Let y = \log_3 81

y = \log_3 81

3^y = 81

3^y = 3^4

y = 4

\log_3 81 = 4

b) Let y = \log_4 16

4^y = 16

4^y = 4^2

y = 2

\log_4 16 = 2

c) Let y = \log_8 64

y = \log_8 64

8^y = 64

8^y = 8^2

y = 2

\log_8 64 = 2
```


Complete "Check your Understanding" question 11.

```
11. a) log<sub>3</sub> 81 + log<sub>3</sub> 3
First term: log<sub>3</sub> 81
3^4 = 81, so the first term in this expression is equal to
4.
Second term: log<sub>3</sub> 3
3^1 = 3, so the second term in this expression is equal
to 1.
\log_3 81 + \log_3 3 = 4 + 1
                    = 5
b) log<sub>2</sub> 64 – log<sub>2</sub> 4
First term: log<sub>2</sub> 64
2<sup>6</sup> = 64, so the first term in this expression is equal to
6.
Second term: log<sub>2</sub> 4
2^2 = 4, so the second term in this expression is equal
to 2.
\log_2 64 - \log_2 4 = 6 - 2
                    = 4
```

c) $(\log_4 1) \left(\log_5 \left(\frac{1}{5} \right) \right)$ First term: $\log_4 1$ $4^0 = 1$, so the first term in this expression is equal to 0. Second term: $\log_5 \left(\frac{1}{5} \right)$ $5^{-1} = \frac{1}{5}$, so the second term in this expression is

equal to -1. $\left(\log_4 1\right)\left(\log_5\left(\frac{1}{5}\right)\right) = (0)(-1)$ = 0 d) $\log_3 27 \pm \log_3 \left(\frac{1}{9}\right)$ First term: $\log_3 27$ $3^3 = 27$, so the first term in this expression is equal to 3 Second term: $\log_3 \left(\frac{1}{9}\right)$ $5^{-2} = \frac{1}{9}$, so the second term in this expression is equal to -2. $\log_3 27 \pm \log_3 \left(\frac{1}{9}\right) = 3 \pm (-2)$ $\log_3 27 \pm \log_3 \left(\frac{1}{9}\right) = -\frac{3}{2}$

Complete "Check your Understanding" question 12.

Solution:

12. A: $\log_2 32 - \log_2 8$ First term: $\log_2 32$ $2^5 = 32$, so the first term in expression A is equal to 5. Second term: $\log_2 8$ $2^3 = 8$, so the second term in expression A is equal to 3. $\log_2 32 - \log_2 8 = 5 - 3$ = 2B: $\log 85 + \log 5 = 2.628...$

Since 2.628... > 2, B is greater than A.

Complete "Check your Understanding" question 13.

Solution:

13. A: $\log_{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right) + \log_2\left(\frac{1}{8}\right)$ First term: $\log_{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right)$ $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$, so the first term in expression A is equal to 4. Second term: $\log_2\left(\frac{1}{8}\right)$ $2^{-3} = \frac{1}{8}$, so the second term in expression A is equal to -3. $\log_{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right) + \log_2\left(\frac{1}{8}\right) = 4 + (-3)$ $\log_{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right) + \log_2\left(\frac{1}{8}\right) = 1$ B: $\log_3 27 + \ln 2$ First term: $\log_3 27$ $3^3 = 27$, so the first term in expression B is equal to 3. $\log_3 27 + \ln 2 = 3 + 0.693...$ = 3.693...C: $\log 100 + \log_8 8$ First term: $\log 100$ $10^2 = 100$, so the first term in expression C is 2. Second term: $\log_8 8$ $8^1 = 8$, so the second term in expression C is 1. $\log 100 + \log_8 8 = 2 + 1$ = 3The order of the expressions from least to greatest is A, C, B.

Complete "Check your Understanding" question 16.

```
16. a) Car battery acid has a pH of 0, and distilled
water has a pH of 7.
Car battery acid:
   pH = -log[H^+]_c
     0 = -\log[H^{\dagger}]_{c}
0 = \log[H^+]_c

[H^+]_c = 10^0

[H^+]_c = 1
Distilled water:
  pH = -log[H^{+}]_{D}
7 = -log[H^{+}]_{D}
   -7 = \log[H^{\dagger}]_{D}
[H^+]_D = 10^{-7}
 \frac{[H^-]_{\rm C}}{[H^-]_{\rm D}} = \frac{1}{10^{-7}}
 \frac{[H^-]_c}{10^7} = 10^7
 [H⁻]<sub>D</sub>
 \frac{[H^-]_c}{1} = 10000000
 [H⁻]
The acid used in car batteries is 10 million times more
acidic than distilled water.
```


Complete "Check your Understanding" question 21

Solution:

21. e.g., To evaluate $\log_b A$, determine the exponent needed that when applied to the base *b* gives the result *A*. If *A* is a power of the base *b*, the exponent can be determined without technology.