## Math 30-2: U7L2 Teacher Notes

## Evaluating Logarithmic Functions

## Key Math Learnings:

By the end of this lesson, you will learn the following concepts:

- Express a logarithmic equation as an exponential equation and vice versa.
- Determine the value of a logarithmic expression without technology.
- Determine the approximate value of a logarithmic expression without technology.
- Solve problems that involve logarithmic scales, such as the Richter scale and pH scale.


## Logarithmic Functions are Equivalent to Exponential Functions

From the first lesson, we learned that the logarithm of a number is the exponent by which another fixed value, the base, has to be raised to produce that number.

For example, the logarithm of 1000 to base 10 is 3 , because $10^{3}=1000$

Therefore, the logarithmic function is equivalent to an exponential function.

$$
y=\log _{b} x \text { is equivalent to } x=b^{y}
$$

Remember that the common logarithmic function has a base of 10, therefore:

$$
y=\log x \text { is equivalent to } x=10^{y}
$$

And that the natural logarithmic function has a base of $e$, therefore:

$$
y=\ln x \text { is equivalent to } x=e^{y}
$$

## Evaluating Logarithmic Functions

The value of a logarithm can be determined in one of the following ways:

- Set the logarithmic expression equal to $y$, and write the equivalent exponential form.

Then determine the exponent to which the base must be raised to get the required number.

- If the base of logarithm is 10 or $e$, you can use a scientific or graph calculator.


## Does the Logarithm of a Negative Number Exist?

The logarithm of a negative number does not exist.

## Example:

## Calculate $\log _{5}(-25)$

## Solution:

Write the logarithm as an exponent.

$$
5^{x}=-25
$$

There is no exponent that will give you a negative answer. This logarithm is UNDEFINED. Remember that the logarithmic function has a domain of $x>0$, where $x \in R$

## Practice Problem:

Complete "Check your Understanding" question 5 on page of your textbook.

## Solution:

5. a) I estimate that $2<y<3$ since $10^{2}=100$ is less
than 250 and $10^{3}=1000$ is greater than 250 .
$250=10^{y}$
$y=\log 250$
$y=2.397$...
It is approximately 2.4 .
b) I estimate that $2<y<3$ since $e^{2}<9<e^{3}$.
$9=e^{y}$
$y=\ln 9$
$y=2.197 \ldots$
It is approximately 2.2 .

## Practice Problem:

Complete "Check your Understanding" question 6.

## Solution:

6. a) $\frac{1}{9}=3^{y}$

$$
y=\log _{3} \frac{1}{9}
$$

b) $1000000=2^{y}$
$y=\log _{2} 1000000$
c) $5=7^{y}$
$y=\log _{7} 5$
d) $x=a^{y}$
$y=\log _{a} x$

Practice Problem:
Complete "Check your Understanding" question 7.

## Solution:

7. a) $x=\log _{\frac{1}{2}} 100$
$\left(\frac{1}{2}\right)^{x}=100$
b) $x=\log _{20} 40$
$20^{x}=40$
c) $x=\ln 0.25$
$e^{x}=0.25$
d) $x=\ln 1000$
$e^{x}=1000$

## Practice Problem:

Complete "Check your Understanding" question 8.

## Solution:

8. a) Let $y=\log _{3} 81$
$y=\log _{3} 81$
$3^{y}=81$
$3^{y}=3^{4}$
$y=4$
$\log _{3} 81=4$
b) Let $y=\log _{4} 16$
$y=\log _{4} 16$
$4^{y}=16$
$4^{y}=4^{2}$
$y=2$
$\log _{4} 16=2$
c) Let $y=\log _{8} 64$
$y=\log _{8} 64$
$8^{y}=64$
$8^{y}=8^{2}$
$y=2$
$\log _{8} 64=2$

## Practice Problem:

Complete "Check your Understanding" question 11.

## Solution:

11. a) $\log _{3} 81+\log _{3} 3$

First term: $\log _{3} 81$
$3^{4}=81$, so the first term in this expression is equal to
4.

Second term: $\log _{3} 3$
$3^{1}=3$, so the second term in this expression is equal
to 1 .
$\log _{3} 81+\log _{3} 3=4+1$
$=5$
b) $\log _{2} 64-\log _{2} 4$

First term: $\log _{2} 64$
$2^{6}=64$, so the first term in this expression is equal to 6.

Second term: $\log _{2} 4$
$2^{2}=4$, so the second term in this expression is equal
to 2.
$\log _{2} 64-\log _{2} 4=6-2$

$$
=4
$$

c) $\left(\log _{4} 1\right)\left(\log _{5}\left(\frac{1}{5}\right)\right)$

First term: $\log _{4} 1$
$4^{0}=1$, so the first term in this expression is equal to 0.

Second term: $\log _{5}\left(\frac{1}{5}\right)$
$5^{-1}=\frac{1}{5}$, so the second term in this expression is equal to -1 .
$\left(\log _{4} 1\right)\left(\log _{5}\left(\frac{1}{5}\right)\right)=(0)(-1)$
$=0$
d) $\log _{3} 27 \div \log _{3}\left(\frac{1}{9}\right)$

First term: $\log _{3} 27$
$3^{3}=27$, so the first term in this expression is equal to Second term: $\log _{3}\left(\frac{1}{9}\right)$
$5^{-2}=\frac{1}{9}$, so the second term in this expression is equal to -2 .
$\log _{3} 27 \div \log _{3}\left(\frac{1}{9}\right)=3 \div(-2)$
$\log _{3} 27 \div \log _{3}\left(\frac{1}{9}\right)=-\frac{3}{2}$

## Practice Problem:

Complete "Check your Understanding" question 12.

## Solution:

12. A: $\log _{2} 32-\log _{2} 8$

First term: $\log _{2} 32$
$2^{5}=32$, so the first term in expression $A$ is equal to 5 .
Second term: $\log _{2} 8$
$2^{3}=8$, so the second term in expression $A$ is equal to 3 .
$\log _{2} 32-\log _{2} 8=5-3$

$$
=2
$$

B: $\log 85+\log 5=2.628 \ldots$
Since 2.628 ... > 2, B is greater than A .

## Practice Problem:

Complete "Check your Understanding" question 13.

## Solution:

13. $A: \log _{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right)+\log _{2}\left(\frac{1}{8}\right)$

First term: $\log _{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right)$
$\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$, so the first term in expression $A$ is equal
to 4 .
Second term: $\log _{2}\left(\frac{1}{8}\right)$
$2^{-3}=\frac{1}{8}$, so the second term in expression $A$ is equal
to -3 .
$\log _{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right)+\log _{2}\left(\frac{1}{8}\right)=4+(-3)$
$\log _{\left(\frac{1}{2}\right)}\left(\frac{1}{16}\right)+\log _{2}\left(\frac{1}{8}\right)=1$

B: $\log _{3} 27+\ln 2$
First term: $\log _{3} 27$
$3^{3}=27$, so the first term in expression $B$ is equal to 3 .
$\log _{3} 27+\ln 2=3+0.693 \ldots$

$$
=3.693 \ldots
$$

C: $\log 100+\log _{8} 8$
First term: $\log 100$
$10^{2}=100$, so the first term in expression $C$ is 2 .
Second term: $\log _{8} 8$
$8^{1}=8$, so the second term in expression $C$ is 1 .
$\log 100+\log _{8} 8=2+1$

$$
=3
$$

The order of the expressions from least to greatest is A, C, B.

## Practice Problem:

Complete "Check your Understanding" question 16.

## Solution:

16. a) Car battery acid has a pH of 0 , and distilled
water has a pH of 7 .
Car battery acid:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]_{c}$
$0=-\log \left[\mathrm{H}^{+}\right] \mathrm{c}$
$0=\log \left[\mathrm{H}^{+}\right]_{\mathrm{c}}$
$\left[\mathrm{H}^{+}\right]_{\mathrm{c}}=10^{\circ}$
$\left[\mathrm{H}^{+}\right]_{\mathrm{c}}=1$
Distilled water:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]_{\mathrm{D}}$
$7=-\log \left[\mathrm{H}^{+}\right]_{\mathrm{D}}$
$-7=\log \left[\mathrm{H}^{+}\right]_{\mathrm{D}}$
$\left[\mathrm{H}^{+}\right]_{\mathrm{D}}=10^{-7}$
$\frac{\left[\mathrm{H}^{-}\right]_{\mathrm{C}}}{\left[\mathrm{H}^{-}\right]_{\mathrm{D}}}=\frac{1}{10^{-7}}$
$\frac{\left[\mathrm{H}^{-}\right]_{\mathrm{C}}}{\left[\mathrm{H}^{-}{ }^{-}\right]}=10^{7}$
$\frac{\left[\mathrm{H}^{-}\right]_{\mathrm{c}}}{\left[\mathrm{H}^{-}\right]_{\mathrm{D}}}=10000000$
The acid used in car batteries is 10 million times more acidic than distilled water.

Practice Problem:
Complete "Check your Understanding" question 21

## Solution:

21. e.g., To evaluate $\log _{b} A$, determine the exponent needed that when applied to the base $b$ gives the result $A$. If $A$ is a power of the base $b$, the exponent can be determined without technology.
