4.4 The Quadratic Formula, pages 244-257

18. Use the discriminant to determine the nature of the roots for each quadratic equation. Do not solve the equation.

a)
$$2x^2 + 11x + 5 = 0$$

b)
$$4x^2 - 4x + 1 = 0$$

c)
$$3p^2 + 6p + 24 = 0$$

d)
$$4x^2 + 4x - 7 = 0$$

19. Use the quadratic formula to determine the roots for each quadratic equation. Express your answers as exact values.

a)
$$-3x^2 - 2x + 5 = 0$$

b)
$$5x^2 + 7x + 1 = 0$$

c)
$$3x^2 - 4x - 1 = 0$$

d)
$$25x^2 + 90x + 81 = 0$$

- **20.** A large fountain in a park has 35 water jets. One of the streams of water shoots out of a metal rod and follows a parabolic path. The path of the stream of water can be modelled by the function $h(x) = -2x^2 + 6x + 1$, where h is the height, in metres, at any horizontal distance x metres from its jet.
 - a) What quadratic equation would you solve to determine the maximum horizontal distance the water jet can reach?
 - b) What is the maximum horizontal distance the water jet can reach? Express your answer to the nearest tenth of a metre.
- 21. A ferry carries people to an island airport. It carries 2480 people per day at a cost of \$3.70 per person. Surveys have indicated that for every \$0.05 decrease in the fare, 40 more people will use the ferry. Use *x* to represent the number of decreases in the fare.
 - **a)** Write an expression to model the fare per person.
 - **b)** Write an expression to model the number of people that would use the ferry per day.

- the revenue, *R*, for the ferry, which is the product of the number of people using the ferry per day and the fare per person.
- **d)** Determine the number of fare decreases that result in a revenue of \$9246.

22. Given the quadratic equation in standard form, $ax^2 + bx + c = 0$, arrange the following algebraic steps and explanations in the order necessary to derive the quadratic formula.

	Algebraic Steps	Explanations
Α	$X + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$	Complete the square.
В	$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$	Solve for x.
c	$x^2 + \frac{b}{a}x = -\frac{c}{a}$	Subtract <i>c</i> from both sides.
D	$ax^2 + bx = -c$	Take the square root of both side.
E	$x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \frac{b^2}{4a^2} - \frac{c}{a}$	Divide both sides by <i>a</i> .
F	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Factor the perfect square trinomial.