Evidence of Understanding

+Big Idea \#1

Multiplicative thinking extends through place value, percentages, scale, proportions, rate, ratio, arrays, division, fractions, decimals, etc.

What to look for, what might be evidence of understanding?

- Students understand place of a number, but not necessarily the value of the number. For example, in 324 , the 2 is in the tens place. If you ask a student how many 10 's are in 324 , the correct answer is 32 tens.

+Big Idea \#2

Multiplication can often be solved using repeated addition

What to look for, what might be evidence of understanding?

- Students see 3×4 as 3 groups of four and that this is different than 4 groups of three.
- Students can explain why 3×4 is equal to 4×3.
- Students can also provide situations showing 3×4 and 4×3 are different. For example, 3 dogs with four legs is not the same as 4 dogs with three legs.
- Students see 40 as:
- 1 forty
- 2 twenties
- 4 tens
- 5 eights
- 8 fives
- 10 fours
- 20 two
- 40 ones

Warning

Multiplication cannot always be solved using repeated addition. For example, 2.5×3.8 and $1 / 2 \times 3 / 4$ can not be interpreted as repeated addition. However, this concept comes later in grades 7 and up.

+Big Idea \#3

The distributive property is a powerful strategy for mental math.
What to look for, what might be evidence of understanding?

- Students decompose numbers in an advantageous manner such as:
- $28 \times 30=(20 \times 30)+(8 \times 30)$ or $(30 \times 30)-(2 \times 30)$
- $12 \times 45=(10+2) \times(40+5)=(10 \times 40)+(10 \times 5)+(2 \times 40)+(2 \times 5)$
- 57×66

Dreambox.com

- Evidence from top-end students.
- $57 \times 66=(60-3) \times(70-4)$

Watch a useful video* on distributive property.
*Please note that you can demonstrate the distributive property in the same manner as shown on the video using Lego blocks.

+Big Idea \#4

Multiplication and division by 1 and 0 have special properties.

What to look for, what might be evidence of understanding?

- When asked to build the area model for 7×1, student would build a line of 7 .

- When asked to build the area model for 7×0, student should say that this is not possible.

+Big Idea \#5

Multiplication and division are inverse operations.

What to look for, what might be evidence of understanding?

- Given a pair of factors, students can
- create the 4 multiplication and division statements that result. For example, 3 and 4 : $3 \times 4=$ $12 ; 4 \times 3=12 ; 12 \div 4=3 ; 12 \div 3=4$
- Students understand that commutative property only applies to multiplication but not to division. Example: $3 \times 4=4 \times 3$ but $12 \div 4 \neq 4 \div 12$

Possible Resources

"Assessing Multiplicative Thinking Using Rich Tasks" - Dianne Siemon and Margarita BreedContains several tasks you could use to check student understanding.
http://www.aare.edu.au/data/publications/2006/sie06375.pdf
"Scaffolding Numeracy in the Middle Years" - Australian Research Council Linkage Project Contains Assessment materials, learning plans, and authentic tasks.
http://www.education.vic.gov.au/school/teachers/teachingresources/discipline/maths/assessment/pages/ scaffoldnum.aspx

