Lesson 13-4

Example 1 Find the Area of a Triangle
 Find the area of $\triangle A B C$ to the nearest tenth.

In this triangle, $b=40, c=30$, and $A=35^{\circ}$. Chose the first formula because you know the value of its variables.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b c \sin A & & \text { Area formula } \\
& =\frac{1}{2}(40)(30) \sin 35^{\circ} & & \text { Replace } b \text { with } 40, c \text { with } 30, \text { and } A \text { with } 35^{\circ} . \\
& \approx 344.1 & & \text { Use a calculator. }
\end{aligned}
$$

To the nearest tenth, the area is 344.1 square meters.

Example 2 Solve a Triangle Given Two Angles and a Side Solve $\triangle A B C$.

You are given the measures of two angles and a side. First, find the measure of the third angle.

$$
\begin{aligned}
110^{\circ}+40^{\circ}+C=180^{\circ} & \begin{array}{l}
\text { The sum of the angle } \mathrm{r} \\
\text { of a triangle is } 180^{\circ} .
\end{array} \\
C=30^{\circ} & 180-(110+40)=30
\end{aligned}
$$

Now use the Law of Sines to find a and c. Write two equations, each with one variable.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & \text { Law of Sines } & \frac{\sin B}{b}=\frac{\sin C}{c} \\
\frac{\sin 110^{\circ}}{a} & =\frac{\sin 40^{\circ}}{28} & \begin{array}{l}
\text { Replace } A \text { with } 110^{\circ}, B \text { with } 40^{\circ}, C \\
\text { with } 30^{\circ}, \text { and } b \text { with } 28 .
\end{array} & \frac{\sin 40^{\circ}}{28}=\frac{\sin 30^{\circ}}{c} \\
a & =\frac{28 \sin 110^{\circ}}{\sin 40^{\circ}} & \text { Solve for the variable. } & \text { Use a calculator. }
\end{aligned}
$$

Therefore, $C=30^{\circ}, a \approx 40.9$, and $c \approx 21.8$.

Example 3 One Solution

Determine whether $\triangle A B C$ has no solution, one solution, or two solutions. Then solve $\triangle A B C$ for $A=$ $60^{\circ}, b=28$, and $a=32$.

Because angle A is acute and $a>b$, you know that one solution exists.
Make a sketch and then use the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin B}{28} & =\frac{\sin 60^{\circ}}{32} & & \text { Law of Sines } \\
\sin B & =\frac{28 \sin 60^{\circ}}{32} & & \text { Multiply each side by } 28 . \\
\sin B & \approx 0.7578 & & \text { Use a calculator. } \\
B & \approx 49.3^{\circ} & & \text { Use the } \sin ^{-1} \text { function. }
\end{aligned}
$$

The measure of angle C is approximately $180-(60+49.3)$ or 70.7°. Use the Law of Sines again to find c.

$$
\begin{aligned}
\frac{\sin 70.7^{\circ}}{c} & =\frac{\sin 60^{\circ}}{32} & \text { Law of Sines } \\
c & =\frac{32 \sin 70.7^{\circ}}{\sin 60^{\circ}} \text { or about } 34.9 & \text { Use a calculator. }
\end{aligned}
$$

Therefore, $B \approx 49.3^{\circ}, C \approx 70.7^{\circ}$, and $c \approx 34.9$.

Example 4 No Solution

Determine whether $\triangle A B C$ has no solution, one solution, or two solutions. Then solve $\triangle A B C$ for $A=110^{\circ}, a=34$, and $b=47$.

Since angle A is obtuse, compare the lengths of a and b. Since $a<b$, there is no solution.

Since $34<47$, there is no solution.

Example 5 Two Solutions

Determine whether $\triangle A B C$ has no solution, one solution, or two solutions. Then solve $\triangle A B C$ for $A=$ $54^{\circ}, a=50$, and $b=60$.

Since angle A is acute, find $b \sin A$ and compare it with a.

$$
\begin{aligned}
b \sin A & =60 \sin 54^{\circ} & & \text { Replace } b \text { with } 60 \text { and } A \text { with } 54^{\circ} . \\
& \approx 48.54 & & \text { Use a calculator. }
\end{aligned}
$$

Since $60>50>48.54$, there are two solutions. Thus, there are two possible triangles to be solved.

Case 1 Acute Angle B

First, use the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin B}{60} & =\frac{\sin 54^{\circ}}{50} \\
\sin B & =\frac{60 \sin 54^{\circ}}{50} \\
\sin B & \approx 0.9708 \\
B & \approx 76.1^{\circ}
\end{aligned}
$$

The measure of angle C is approximately $180-(54+76.1)$ or 49.9°.

Use the Law of Sines again to find c.

$$
\begin{aligned}
\frac{\sin 49.9^{\circ}}{c} & =\frac{\sin 54^{\circ}}{50} \\
c & =\frac{50 \sin 49.9^{\circ}}{\sin 54^{\circ}} \\
c & \approx 47.3
\end{aligned}
$$

Therefore, $B \approx 76.1^{\circ}, C \approx 49.9^{\circ}$, and $c \approx 47.3$.

Case 2 Obtuse Angle B

To find B, you need to find an obtuse angle whose sine is also 0.9708 . To do this, subtract the angle given by your calculator, 76.1°, from 180°. So B is approximately $180-76.1$ or 103.9°.

The measure of angle C is approximately $180-(54+103.9)$ or 22.1°.

Use the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin 22.1^{\circ}}{c} & =\frac{\sin 54^{\circ}}{50} \\
c & =\frac{50 \sin 22.1^{\circ}}{\sin 54^{\circ}} \\
c & \approx 23.3
\end{aligned}
$$

Therefore, $B \approx 103.9^{\circ}, C \approx 22.1^{\circ}$, and $c \approx 23.3$.

Example 6 Use the Law of Sines to Solve a Problem

Two people are standing at different distances from the base of a building and sighting in the top. The person at A looks up at the top of the building with an angle of elevation of 45°. The person at B is $\mathbf{1 0 0}$ feet closer to the base of the building and looks up at the top of the building with an angle of elevation of 55°.
a. What is the height of the building?

Draw and label a diagram of the situation.
First you need to use $\triangle D B A$ to find the measure of a. Since angle α and the angle measuring 55° are supplementary, $\alpha=125^{\circ}$. Then angle θ measures 10°. Use the Law of Sines to find a.

$$
\begin{aligned}
\frac{\sin 45^{\circ}}{a} & =\frac{\sin 10^{\circ}}{100} & & \text { Law of Sines } \\
a & =\frac{100 \sin 45^{\circ}}{\sin 10^{\circ}} & & \text { Solve for } a . \\
a & \approx 407.2 & & \text { Use a calculator. }
\end{aligned}
$$

$\triangle D B C$ is a right triangle with hypotenuse of length a or about 407.2 feet. You know the measure of the angle at $B, 55^{\circ}$, so use sine of $\angle D B C$ to find the height of the building, h.

$$
\begin{aligned}
\sin \angle D B C & =\frac{h}{a} & & \text { Sine ratio } \\
\sin 55^{\circ} & =\frac{h}{407.2} & & B=55^{\circ} \text { and } a=407.2 \\
h & =407.2 \sin 55^{\circ} & & \text { Solve for } h . \\
h & \approx 333.6 . & & \text { Use a calculator. }
\end{aligned}
$$

The height of the building is about 333.6 feet.
b. How far is the person at B from the base of the building?
$\triangle D B C$ is a right triangle and the length of one leg and the hypotenuse is known, so use the Pythagorean Theorem to find $B C$.

$$
\begin{aligned}
h^{2}+B C^{2} & =a^{2} \\
(333.6)^{2}+B C^{2} & =(407.2)^{2} \\
B C^{2} & =(407.2)^{2}-(333.6)^{2} \\
B C & =\sqrt{(407.2)^{2}-(333.6)^{2}} \\
B C & \approx 233.5
\end{aligned}
$$

Pythagorean Theorem
Replace h with 333.6 and a with 407.2.
Subtract (333.6) ${ }^{2}$ from each side.
Take the square root of each side.
Simplify.

The person at B is about 233.5 feet from the base of the building.

