Lesson 13-4

Example 1 Find the Area of a Triangle Find the area of $\triangle ABC$ to the nearest tenth.

In this triangle, b = 40, c = 30, and $A = 35^{\circ}$. Chose the first formula because you know the value of its variables.

Area = $\frac{1}{2}bc \sin A$ Area formula = $\frac{1}{2}(40)(30) \sin 35^{\circ}$ Replace b with 40, c with 30, and A with 35°. ≈ 344.1 Use a calculator.

To the nearest tenth, the area is 344.1 square meters.

Example 2 Solve a Triangle Given Two Angles and a Side Solve $\triangle ABC$.

You are given the measures of two angles and a side. First, find the measure of the third angle.

 $110^{\circ} + 40^{\circ} + C = 180^{\circ}$ The sum of the angle measures of a triangle is 180° .

 $C = 30^{\circ} \qquad 180 - (110 + 40) = 30$

Now use the Law of Sines to find *a* and *c*. Write two equations, each with one variable.

$\frac{\sin A}{a} = \frac{\sin B}{b}$	Law of Sines	$\frac{\sin B}{b} = \frac{\sin C}{c}$
$\frac{\sin 110^{\circ}}{a} = \frac{\sin 40^{\circ}}{28}$	Replace A with 110° , B with 40° , C with 30° , and b with 28.	$\frac{\sin 40^{\circ}}{28} = \frac{\sin 30^{\circ}}{c}$
$a = \frac{28\sin 110^\circ}{\sin 40^\circ}$	Solve for the variable.	$c = \frac{28\sin 30^{\circ}}{\sin 40^{\circ}}$
$a \approx 40.9$	Use a calculator.	$c \approx 21.8$

Therefore, $C = 30^{\circ}$, $a \approx 40.9$, and $c \approx 21.8$.

Example 3 One Solution

Determine whether $\triangle ABC$ has *no* solution, *one* solution, or *two* solutions. Then solve $\triangle ABC$ for $A = 60^{\circ}$, b = 28, and a = 32.

Because angle *A* is acute and a > b, you know that one solution exists.

Make a sketch and then use the Law of Sines to find *B*.

$\frac{\sin B}{28} = \frac{\sin 60^\circ}{32}$	Law of Sines
$\sin B = \frac{28\sin 60^\circ}{32}$	Multiply each side by 28.
$\sin B \approx 0.7578$ $B \approx 49.3^{\circ}$	Use a calculator. Use the sin ⁻¹ function.

The measure of angle *C* is approximately 180 - (60 + 49.3) or 70.7° . Use the Law of Sines again to find *c*.

 $\frac{\sin 70.7^{\circ}}{c} = \frac{\sin 60^{\circ}}{32}$ Law of Sines $c = \frac{32 \sin 70.7^{\circ}}{\sin 60^{\circ}} \text{ or about 34.9}$ Use a calculator.

Therefore, $B \approx 49.3^{\circ}$, $C \approx 70.7^{\circ}$, and $c \approx 34.9$.

Example 4 No Solution

Determine whether $\triangle ABC$ has no solution, one solution, or *two* solutions. Then solve $\triangle ABC$ for $A = 110^{\circ}$, a = 34, and b = 47.

Since angle *A* is obtuse, compare the lengths of *a* and *b*. Since a < b, there is no solution.

Since 34 < 47, there is no solution.

Example 5 Two Solutions

Determine whether $\triangle ABC$ has *no* solution, *one* solution, or *two* solutions. Then solve $\triangle ABC$ for $A = 54^{\circ}$, a = 50, and b = 60.

Since angle *A* is acute, find *b* sin *A* and compare it with *a*.

 $b \sin A = 60 \sin 54^{\circ}$ Replace b with 60 and A with 54°. ≈ 48.54 Use a calculator.

Since 60 > 50 > 48.54, there are two solutions. Thus, there are two possible triangles to be solved.

Case 1 Acute Angle B

First, use the Law of Sines to find *B*.

$$\frac{\sin B}{60} = \frac{\sin 54^{\circ}}{50}$$
$$\sin B = \frac{60 \sin 54^{\circ}}{50}$$
$$\sin B \approx 0.9708$$
$$B \approx 76.1^{\circ}$$

The measure of angle C is approximately 180 - (54 + 76.1) or 49.9° .

Use the Law of Sines again to find *c*.

$$\frac{\sin 49.9^{\circ}}{c} = \frac{\sin 54^{\circ}}{50}$$
$$c = \frac{50 \sin 49.9^{\circ}}{\sin 54^{\circ}}$$
$$c \approx 47.3$$

Therefore, $B \approx 76.1^{\circ}$, $C \approx 49.9^{\circ}$, and $c \approx 47.3$.

To find *B*, you need to find an obtuse angle whose sine is also 0.9708. To do this, subtract the angle given by your calculator, 76.1°, from 180° . So *B* is approximately 180 - 76.1 or 103.9° .

The measure of angle C is approximately 180 - (54 + 103.9) or 22.1° .

Use the Law of Sines to find *c*.

$$\frac{\sin 22.1^{\circ}}{c} = \frac{\sin 54^{\circ}}{50}$$
$$c = \frac{50 \sin 22.1^{\circ}}{\sin 54^{\circ}}$$
$$c \approx 23.3$$

Therefore, $B \approx 103.9^{\circ}$, $C \approx 22.1^{\circ}$, and $c \approx 23.3$.

Example 6 Use the Law of Sines to Solve a Problem

Two people are standing at different distances from the base of a building and sighting in the top. The person at A looks up at the top of the building with an angle of elevation of 45°. The person at B is 100 feet closer to the base of the building and looks up at the top of the building with an angle of elevation of 55°.

a. What is the height of the building?

Draw and label a diagram of the situation.

First you need to use ΔDBA to find the measure of *a*. Since angle α and the angle measuring 55° are supplementary, $\alpha = 125^{\circ}$. Then angle θ measures 10°. Use the Law of Sines to find *a*.

$\frac{\sin 45^{\circ}}{a} = \frac{\sin 10^{\circ}}{100}$	Law of Sines
$a = \frac{100\sin 45^{\circ}}{\sin 10^{\circ}}$	Solve for <i>a</i> .
$a \approx 407.2$	Use a calculator.

 ΔDBC is a right triangle with hypotenuse of length *a* or about 407.2 feet. You know the measure of the angle at *B*, 55°, so use sine of $\angle DBC$ to find the height of the building, *h*.

$$\sin \angle DBC = \frac{h}{a}$$

Sine ratio
$$\sin 55^\circ = \frac{h}{407.2}$$

$$B = 55^\circ \text{ and } a = 407.2$$

$$h = 407.2 \sin 55^\circ$$

Solve for h.
$$h \approx 333.6.$$

Use a calculator.

The height of the building is about 333.6 feet.

b. How far is the person at *B* from the base of the building?

 ΔDBC is a right triangle and the length of one leg and the hypotenuse is known, so use the Pythagorean Theorem to find *BC*.

$h^2 + BC^2 = a^2$	Pythagorean Theorem
$(333.6)^2 + BC^2 = (407.2)^2$	Replace <i>h</i> with 333.6 and <i>a</i> with 407.2.
$BC^2 = (407.2)^2 - (333.6)^2$	Subtract $(333.6)^2$ from each side.
$BC = \sqrt{(407.2)^2 - (333.6)^2}$	Take the square root of each side.
$BC \approx 233.5$	Simplify.

The person at *B* is about 233.5 feet from the base of the building.