Mathematics 30-2

5.1 Exploring the Graphs of Polynomial Functions

Name:
Date:

New Vocabulary

Scatterplot: A set of points on a grid, used to visualize a relationship or possible trend in data.

Polynomial Function: A function that contains only the operations of multiplication and addition with real-number coefficients, whole-number exponents, and two variables.
For example: $y=5 x^{3}-3 x+7, y=-4 x+8, f(x)=x^{2}-3 x+4$

Degree: The highest exponent in a polynomial function.
For example: The degree of $y=4 x^{3}-8 x^{2}+5$ is ' 3 '.

Leading Coefficient: The coefficient of the term with the greatest degree in the polynomial function in standard form.
For example: The leading coefficient in the function $f(x)=-5 x^{2}+8 x-7$ is ' -5 '.

Constant Term: The term in the polynomial function that has no variable, i.e. the degree is ' 0 '.
For example: The constant term in the function $y=4 x^{3}-6 x^{2}-7 x+1$ is ' 1 '.

Linear Function	Quadratic Function	Cubic Function
A polynomial function of first degree, whose greatest exponent is '1'.	A polynomial function of second degree, whose greatest exponent is ' 2 '.	A polynomial function of third degree, whose greatest exponent is ' 3 '.
Standard Form is $f(x)=a x+b$, where $a \neq 0$.	$f(x)=a x^{2}+b x+c$, where $a \neq 0$.	$f(x)=a x^{3}+b x^{2}+c x+d$, where $a \neq 0$.
Examples:	Examples:	
$y=2 x-3, f(x)=-\frac{2}{3} x+4$	$y=x^{2}-3 x+4, f(x)=-\frac{1}{2} x^{2}+4 x+5$	$y=x^{3}-3 x+2, f(x)=-2 x^{3}+4 x^{2}+\frac{3}{4}$

End Behaviour: The behaviour of the y-values of the function as $|x|$ becomes very large.

Turning Point: Any point where the graph of a function changes from increasing to decreasing or decreasing to increasing.

Investigate the Math

Using your graphing calculator, graph each of the following functions then complete the table.

Type of Function	Constant	Linear	Quadratic	Cubic
Function	$y=4$	$y=\frac{1}{2} x-3$	$y=x^{2}-3 x-4$	$y=x^{3}-2 x^{2}-3 x$
Degree				
Leading Coefficient				
Constant Term				
Sketch				
Number of x-intercepts				
Domain				
Range				

Let's look at the end behaviour if the leading coefficient is positive versus if it is negative. Describe where the arms are extended.

1. Graph $y=2 x-4$ and $y=-x+1$ and discuss end behaviour.
2. Graph $y=x^{2}-4 x-5$ and $y=-x^{2}+4$ and discuss end behaviour.
3. Graph $y=x^{3}-x^{2}-2$ and $y=-x^{3}+4 x^{2}-3 x$ and discuss end behaviour.
