Combining Transformations

Warm-up -
a. If $g(x)$ is a reflection of $f(x)$ in the y-axis, write the equation of $g(x)$ in terms of $f(x)$.
b. What points are invariant?
c. If $g(x)$ is a reflection of $f(x)$ in the x-axis, write the equation of $g(x)$ in terms of $f(x)$.
d. What points are invariant?
e. If $g(x)$ is a reflection of $f(x)$ in the line $y=x$, write the equation of $g(x)$ in terms of $f(x)$.
f. What points are invariant?

Combining Transformations

- We can combine the various transformations; right, left, up, down, stretches and reflections.

However, to simplify the procedure, always perform the transformations in the following order:

1. Stretch

2. Reflect
3. Translate

The easiest form to think of is:

$$
y=a f[b(x-c)]+d
$$

a $\{$
is a vertical stretch about the x-axis by a factor of $|a|$ reflection in the x-axis if $a<0$
${ }^{\circ}\{$ is a horizontal stretch about the y-axis by a factor of $\left|\frac{1}{b}\right|$ reflection in the y-axis if $b<0$
$C\left\{\begin{array}{l}\text { is a horizontal shift left or right depending on the sign of ' } c \text { ' } \\ \text { *Note* ' } c \text { 'must be read when the coefficient of } x \text { is } 1\end{array}\right.$
$d\{$ is a vertical shift up or down depending on the sign of ' d '

Example 1: Given the graph of $y=f(x)$,
a. transform the graph of $f(x)$ to sketch the graph of $g(x)=f(x-4)+2$
b. transform the graph of $f(x)$ to sketch the graph of $h(x)=\frac{1}{2} f(x)-3$
c. transform the graph of $f(x)$ to sketch the graph of $y=f(2 x)+3$

Also, show a mapping of the points.
a. $(x, y) \rightarrow(\quad, \quad)$
b. $(x, y) \rightarrow(\quad, \quad)$
c. $(x, y) \rightarrow(\quad, \quad)$

Your turn: Given the graph of $y=f(x)$,
a. transform the graph of $f(x)$ to sketch the graph of $y=-2 f(2 x)$
b. transform the graph of $f(x)$ to sketch the graph of $y=f(-x)-2$

Mapping of the points.
a. $(x, y) \rightarrow(\quad, \quad)$
b. $(x, y) \rightarrow(\quad, \quad)$

Try: Given the graph of $f(x)=|x|$,
a. transform the graph of $f(x)$ to sketch the graph of

$$
g(x)=\frac{1}{3} f(4 x-4)+6
$$

Use mapping: $(x, y) \rightarrow(\quad, \quad)$

Example 2: Describe the combination of transformations that would need to be applied to the function $f(x)=|x|$ in order to obtain the transformed function $g(x)=3 f\left(\frac{1}{2} x\right)-6$. Write the corresponding function and sketch the graph of $g(x)$.

Description	Mapping
Vertical stretch by a factor of 3 about the x-axis.	$y \rightarrow 3 y$

Your Turn: Describe the combination of transformations that would need to be applied to the function $f(x)=x^{2}$ in order to obtain the transformed function $g(x)=-2 f\left(\frac{1}{2}(x+4)\right)-3$. Write the corresponding function and sketch the graph of $g(x)$.

Description	Mapping
$(x, y) \rightarrow($,

$$
(x, y) \rightarrow(\quad, \quad)
$$

Example 3: The graph of the function $y=g(x)$ represents a transformation of the graph of $y=f(x)$. Determine the equation of $g(x)$ in the form $g(x)=a f[b(x-h)]-k$. Explain your answer.
a.

b.

Can you write the actual function?

Homework

1. Transformations Quiz 2

2. Text Pages 38-43, Exercises \# 1-11, 13a, 14, 15, C3.

Transformations Quiz 2a.doc

Reflections Assignment 1.doc
(Transformations Quiz 2a.doc

