Inverses

Recall -
a. If $g(x)$ is a reflection of $f(x)$ in the line $y=x$, write the equation of $g(x)$ in terms of $f(x)$.
b. What points are invariant?

Inverse of a function:

If $f(x)$ is a function with domain A and range B, the inverse function, if it exists, is denoted by $f^{-1}(x)$ and has a domain B and range $A . \quad(x, y) \rightarrow(y, x)$

To find the inverse of a relation:

1. For an function, exchange x and y, and then solve for y.
can be written as

$$
f(x)=2 x+3
$$

$$
y=2 x+3
$$

exchange x \& y

$$
x=2 y+3
$$

solve for y

$$
2 y=x-3
$$

$$
y=\frac{x-3}{2}
$$

Notice that the operations for the functions are opposite operations.
$f(x)=2 x+3$, multiplies the input value by a factor of 2 , and then adds 3.
The inverse function, $f^{-1}(x)=\frac{x-3}{2}$, subtracts 3 and then divides by 2 .
The opposite aperations are performed in the opposite order.

Let's investigate the transformations on the basic graph of $y=x$

$$
\begin{array}{ll}
f(x)=2 x+3 & \begin{array}{l}
\text { There is a vertical stretch by a factor of } 2 \\
\text { and a vertical shift up } 3 \text { units }
\end{array}
\end{array}
$$

The inverse is a horizontal stretch by a factor
$f^{-1}(x)=\frac{1}{2}(x-3) \quad$ of 2 and a horizontal shift 3 units right
Graph both of these on the same grid using a table of values.
Also, graph the line $y=x$

What do you notice?

Remember: You can use inverse notation, $f^{-1}(x)$ if and only if the inverse is also a function.

Invariant points: For inverses, $y=f(x)$ and $x=f(y)$ points on the line $y=x$ are invariant since it is the line of reflection.

Example 2: For each graph of $y=f(x)$ shown below, draw the graph of $x=f(y)$ on the same axes. Use mapping of points
a.

$$
(x, y) \rightarrow(\quad, \quad)
$$

b.

Example 3:

The blue graph is a reflection of the black graph in the line $y=x$. The equation of the black graph is given. Write the equation of the blue graph.
a.

b.

C.

d.

Homework

1. Text Pages 51-55, Exercises \# 1-6, 9 -11, 13, 15
$19,20, C 2$.

Reflections Assignment 1.doc
(Transformations Quiz 2a.doc

