

<u>Background</u>: We can use what we already know about the basic function $y = \frac{1}{x}$ and transformations, to write and graph equations in the

form $f(x) = \frac{a}{x-h} + k$ Let's explore this. Graph $y = \frac{1}{x}$ and $f(x) = \frac{2}{x-3} + 2$ on the same grid.

Begin by stating any restrictions on the variable. These are the non-permissible values. Non-permissible values may result in a vertical asymptote.

Is there a horizontal asymptote?

What are the transformations on the basic function, to obtain the function $f(x) = \frac{2}{x-3} + 2$?

a=	
b=	<u></u>
h=	
k=	

Note: You can find the horizontal asymptote by subbing in a very large value for x.

Example 1A. Transforming rational functions.

Graph the functions $y = \frac{1}{x}$, $y = \frac{3}{x}$, $y = \frac{6}{x}$, and $y = \frac{9}{x}$ using technology.

- a. Are there any non-permissible values?
- b. What appears to be happening as the numerator grow larger?

Example 1B. Consider the function $y = \frac{5}{x}$. This function can also be written in the form $y = 5\left(\frac{1}{x}\right)$ so the 5 is the a value since $y = a\left(\frac{1}{x}\right)$ can be written as $y = \frac{a}{x}$

Graph the function on your calculator and fill in the following chart:

Characteristic	$y = \frac{5}{x}$
non-permissible value	
behavior near the non-permissible value	
end behavior (large values of x)	
domain	
range	
equation of the vertical asymptote	
equation of the horizontal asymptote	

Example 2: Sketch the graph of the function $f(x) = \frac{2}{x-3} + 4$ using transformations, and identify any characteristics of the graph.

Graph the function and fill in the following chart:

Characteristic	
non-permissible value	
behavior near the non-permissible value	
end behavior (large values of x)	
domain	
range	
equation of the vertical asymptote	
equation of the horizontal asymptote	

Graph the function and fill in the following chart:

Characteristic	
non-permissible value	
behavior near the non-permissible value	
end behavior (large values of x)	
domain	
range	
equation of the vertical asymptote	
equation of the horizontal asymptote	

Comparing Rational Functions

Example 4: Consider the functions $f(x) = \frac{1}{x^2}$, $g(x) = 6 - \frac{1}{(x+4)^2}$, and $h(x) = \frac{3}{x^2 - 10x + 25}$

10	10 † y	10 † <i>y</i>
1		
-10 10	-10 10	*10 10 10
-10	-10	-10

Graph the functions and fill in the following chart:

Characteristic	$f(x) = \frac{1}{x^2}$	$g(x) = 6 - \frac{1}{\left(x+4\right)^2}$	$h(x) = \frac{3}{x^2 - 10x + 25}$
non-permissible values			
behavior near the non-permissible value			
end behavior (large values of x)			
domain			
range			
equation of the vertical asymptote			
equation of the horizontal asymptote			

Your Turn: Consider the functions $f(x) = \frac{1}{x^2}$, $g(x) = \frac{-8}{(x+6)^2}$, and $h(x) = \frac{4}{x^2 - 4x + 4} - 3$

Graph the functions and fill in the following chart:

Characteristic	$f(x) = \frac{1}{x^2}$	$g(x) = \frac{-8}{\left(x+6\right)^2}$	$h(x) = \frac{4}{x^2 - 4x + 4} - 3$
non-permissible values			
behavior near the non-permissible value			
end behavior (large values of x)			
domain			
range			
equation of the vertical asymptote			
equation of the horizontal asymptote			

Example 6: Describe the similarities and differences between the following graphs, without using your calculator.

$$f(x) = \frac{4}{x+1} + 5$$
 $g(x) = 4(x+1)^2 + 5$ $h(x) = 4\sqrt{x+1} + 5$

Translations Assignment 1.doc