## Unit 2 Part II: Rational Functions



$y=\frac{2 x^{2}+3 x+1}{x^{2}-5 x+4}$

$\frac{x^{2}(x-5)(x-3)(x+1)}{3(x-3)(x+2)^{2}(x-4)}$

Rational Function: Are functions of the form $y=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ polynomial expressions and $q(x) \neq 0$.

Background: We can use what we already know about the basic function $y=\frac{1}{x}$ and transformations, to write and graph equations in the form $f(x)=\frac{a}{x-h}+k$
Let's explore this. Graph $y=\frac{1}{x}$ and $f(x)=\frac{2}{x-3}+2$ on the same grid.

Begin by stating any restrictions on the variable. These are the non-permissible values.
Non-permissible values may result in a vertical asymptote.
Is there a horizontal asymptote?
What are the transformations on the basic function, to obtain the function $f(x)=\frac{2}{x-3}+2$ ?
$a=$ $\qquad$
$b=$ $\qquad$ ——
$h=$ $\qquad$ ——
$\mathrm{k}=$ $\qquad$
State the domain and range for each function.

$$
f(x)=\frac{2}{x-3}+2
$$

$$
y=\frac{1}{x}
$$



| $x$ | $f(x)$ |
| :--- | :--- |
| -1 |  |
| 0 |  |
| 1 |  |
| 2 |  |
| 3 | $n p v$ |
| 4 |  |
| 5 |  |
| 6 |  |



Note: You can find the horizontal asymptote by subbing in a very large value for $x$.

Example 1A. Transforming rational functions.
Graph the functions $y=\frac{1}{x}, y=\frac{3}{x}, y=\frac{6}{x} \quad$, and $y=\frac{9}{x}$ using technology.
a. Are there any non-permissible values?
b. What appears to be happening as the numerator grow larger?

Example 1 B . Consider the function $y=\frac{5}{x}$. This function can also be written

$$
\begin{aligned}
& \text { in the form } y=5\left(\frac{1}{x}\right) \quad \text { so the } 5 \text { is the a value since } \\
& y=a\left(\frac{1}{x}\right) \text { can be written as } y=\frac{a}{x}
\end{aligned}
$$

Graph the function on your calculator and fill in the following chart:

| Characteristic | $y=\frac{5}{x}$ |
| :--- | :--- |
| non-permissible value |  |
| behavior near the non-permissible value |  |
| end behavior (large values of $x$ ) |  |
| domain |  |
| range |  |
| equation of the vertical asymptote |  |
| equation of the horizontal asymptote |  |

Example 2: Sketch the graph of the function $f(x)=\frac{2}{x-3}+4$ using transformations, and identify any characteristics of the graph.
hint: compare $f(x)=\frac{2}{x-3}+4$ to $f(x)=\frac{a}{x-h}+k$

Graph the function and fill in the following chart:

| Characteristic |  |
| :--- | :--- |
| non-permissible value |  |
| behavior near the non-permissible value |  |
| end behavior (large values of $x$ ) |  |
| domain |  |
| range |  |
| equation of the vertical asymptote |  |
| equation of the horizontal asymptote |  |

Example 3: Sketch the graph of the function $f(x)=\frac{2 x-1}{x-3}$
hint: we need to manipulate $f(x)=\frac{2 x-1}{x-3}$ before we can compare it to $f(x)=\frac{a}{x-h}+k$

Graph the function and fill in the following chart:

| Characteristic |  |
| :--- | :--- |
| non-permissible value |  |
| behavior near the non-permissible value |  |
| end behavior (large values of $x$ ) |  |
| domain |  |
| range |  |
| equation of the vertical asymptote |  |
| equation of the horizontal asymptote |  |

## Comparing Rational Functions

Example 4: Consider the functions $f(x)=\frac{1}{x^{2}} \quad, \quad g(x)=6-\frac{1}{(x+4)^{2}}$
and $h(x)=\frac{3}{x^{2}-10 x+25}$ and $h(x)=\frac{3}{x^{2}-10 x+25}$


Graph the functions and fill in the following chart:

| Characteristic | $f(x)=\frac{1}{x^{2}}$ | $g(x)=6-\frac{1}{(x+4)^{2}}$ | $h(x)=\frac{3}{x^{2}-10 x+25}$ |
| :--- | :--- | :--- | :--- |
| non-permissible <br> values |  |  |  |
| behavior near the <br> non-permissible value |  |  |  |
| end behavior <br> (large values of $x$ ) |  |  |  |
| domain |  |  |  |
| range |  |  |  |
| equation of the <br> vertical asymptote |  |  |  |
| equation of the <br> horizontal asymptote |  |  |  |

Your Turn: Consider the functions $f(x)=\frac{1}{x^{2}}, g(x)=\frac{-8}{(x+6)^{2}}$, and $\quad h(x)=\frac{4}{x^{2}-4 x+4}-3$

Graph the functions and fill in the following chart:

| Characteristic | $f(x)=\frac{1}{x^{2}}$ | $g(x)=\frac{-8}{(x+6)^{2}}$ | $h(x)=\frac{4}{x^{2}-4 x+4}-3$ |
| :--- | :--- | :--- | :--- |
| non-permissible <br> values |  |  |  |
| behavior near the <br> non-permissible value |  |  |  |
| end behavior <br> (large values of $x$ ) |  |  |  |
| domain |  |  |  |
| range |  |  |  |
| equation of the <br> vertical asymptote |  |  |  |
| equation of the <br> horizontal asymptote |  |  |  |

Example 5: Determine an equation of a rational function that has an asymptote at $x=2$ and $y=4$. Explain the rationale for your equation.

Sketch the graph of your function Identify the asymptotes

Domain:
Range:


Example 6: Describe the similarities and differences between the following graphs, without using your calculator.

$$
f(x)=\frac{4}{x+1}+5 \quad g(x)=4(x+1)^{2}+5 \quad h(x)=4 \sqrt{x+1}+5
$$

## Homework

1. Assignment Handout:
"BLM 9-2 Exploring Rational Functions and Transformations"
2. Text Pages 442-445, Exercises \# 1-8, 10-14, 21, C2, C3
(0) Translations Assignment 1.doc
