Solving Exponential Equations

Lesson 3
Exponential Equation - An equation that has a variable in the exponent.
Exponential expressions can be written in different ways. It is often useful to rewrite the exponential expression using a different base. If we can express two exponential expressions with the same base, we can equate them to each other.

For instance, $\quad 2^{x}=8^{x-1}$

$$
\begin{aligned}
2^{x} & =\left(2^{3}\right)^{x-1} \\
2^{x} & =2^{3(x-1)} \\
2^{x} & =2^{3 x-3}
\end{aligned}
$$

Since the bases on both sides of the equation are the same, the exponents must be equal.

$$
\begin{aligned}
& x=3 x-3 \quad \text { Equate the exponents } \\
& 3=2 x \\
& x=\frac{3}{2}
\end{aligned}
$$

Example 1: Changing the base of powers.

Rewrite each expression as a power with a base of 3 .

27
9^{2} $27^{\frac{1}{3}}(\sqrt[3]{81})^{2}$

Your Turn: Write each expression as a power with a base of 2.
4^{3}

$$
\frac{1}{8} \quad 8^{\frac{2}{3}}(\sqrt{16})^{3}
$$

Example 2: Solve an Equation by Changing the Base

Solve each equation algebraically. Check your answers algebraically and using technology

$$
4^{x+2}=64^{x} \quad 4^{2 x}=8^{2 x-3}
$$

Your Turn:
Solve each equation algebraically. Check your answers algebraically and using technology
$2^{4 x}=4^{x+3}$
$9^{4 x}=27^{x-1}$

Consider the exponential equation $3^{x}=4^{2 x-1}$
Can you solve this one using the same method as the last one? Explain.

$$
3^{x}=4^{2 x-1}
$$

What are the limitations when solving exponential equations that have terms with different bases?

Example 3: Solve Problems Involving Exponential Equations With Different Bases

Justin plans to buy a car. He has saved $\$ 5000$. The car he wants costs $\$ 5900$. How long will Justin have to invest his money in a term deposit that pays 6.12% per year, compounded quarterly, before he has enough to buy the car?

The compound interest formula is

$$
A=P(1+i)^{n}
$$

where A is the amount of money at the end of the investment
P is the principal amount invested
i is the interest rate per compounding period, expressed as a decimal n is the number of compounding periods

List the known values and substitute them into the formula.

$$
\begin{aligned}
& A= \\
& P= \\
& i= \\
& n=?
\end{aligned}
$$

Homework

1. Assignment Handout: BLM 7-4; Solving Exponential Equations.
2. Text Pages 364-365, Exercises \#1-5, 7, $9-14,16,17, C 2$
(0) Translations Assignment 1.doc
