8.2 Graphing Logarithms and Transformations Lesson 6

Explaining the effects of the parameters $\mathrm{a}, \mathrm{b}, \mathrm{h}$, and k in $y=a \log _{c}(b(x-h))+k$ on the graph of $y=\log _{c} x$ where $c>1$

From your knowledge of transformations, predict the effects of the parameters $\mathrm{a}, \mathrm{b}, \mathrm{h}$, and k in $y=a \log _{c}(b(x-h))+k$ on the graph of the logarithmic function $y=\log _{c} x$, in the table below.

Parameter	Effect on the basic function graph
a	
b	
h	
k	

Only parameter \qquad changes the \qquad _ and the \qquad .
\qquad .

M301.U3.L6 Graphing Logarithms with Transformations.notebook

The following table shows, in mapping notation, how each parameter affects the point (x, y) on the graph of $y=\log _{c} x$

Parameter	Transformation
a	$(x, y) \rightarrow(x, a y)$
b	$(x, y) \rightarrow\left(\frac{1}{b} x, y\right)$
h	$(x, y) \rightarrow(x+h, y)$
k	$(x, y) \rightarrow(x, y+k)$

If the blue graph is $y=\log _{2} x$
Can you write the equations for the red graph:

pink graph:

black graph:

Where would you sketch the graph $y=\log _{2}(x-4)$?

M301.U3.L6 Graphing Logarithms with Transformations.notebook

Example 1:

a. Sketch the graphs of $y=\log _{4} x$ and $y=\log _{4}(x+4)-5$ on the same grid.

$$
(x, y) \rightarrow(\quad, \quad)
$$

b. State the domain, range x-intercept, y-intercept, and the equation of the asymptote.

M301.U3.L6 Graphing Logarithms with Transformations.notebook

Your turn:
a. Sketch the graphs of $y=\log _{3} x$ and $y=\log _{3}(x+9)+2$ on the same grid.

$$
(x, y) \rightarrow(\quad, \quad)
$$

b. State the domain, range x-intercept, y-intercept, and the equation of the asymptote.

Example 2: Reflections, Stretches and Translations of Logarithmic Functions.
a. Use transformations to sketch the graph of $y=-\log _{2}(2 x+6)$

$y=\log _{2} x$	
$\left(\begin{array}{c}y \\ \hline\end{array}\right.$	

b. Identify the equation of the asymptote, the domain and range, and any intercepts, if they exist.

Your Turn: a. Use transformations to sketch the graph of $y=2 \log _{3}(-x+1)$

b. Identify the equation of the asymptote, the domain and range, and any intercepts, if they exist.

Example 3: Determine the Equation of a Logarithmic Function Given Its Graph The red graph can be generated by stretching the blue graph of $y=\log _{4} x$. Write the equation that describes the red graph.

Try this one:
The red graph can be generated by stretching and reflecting the blue graph of $y=\log _{4} x$. Write the equation that describes the red graph.

Example 3: Applications of Logarithmic Functions
a. The pH of a solution is given by the formula $p H=-\log \left[H^{+}\right]$
where $\left[\mathrm{H}^{+}\right]$is the solution's hydrogen ion concentration (in moles per litre).
Find the pH of the solution.
i. Iemon juice: $\left[H^{+}\right]=1 \times 10^{-2.4}$ moles per litre
ii. vinegar: $\left[\mathrm{H}^{+}\right]=1 \times 10^{-3}$ moles per litre
iii. orange juice: $\left[\mathrm{H}^{+}\right]=1 \times 10^{-3.5}$ moles per litre
b. The Richter scale, used for measuring the magnitude, R, of an earthquake, is given by the model

$$
R=0.67 \log (0.37 E)+1.46
$$

where E is the energy (in kilowatt-hours) released by the earthquake.

Suppose an earthquake releases 15500000000 kilowatt-hours of energy. What is the earthquakes magnitude?
c. Most tornadoes last less than one hour and travel less than 20 miles. The wind speed s (in miles per hour) near the center of the tornado is related to the distance d (in miles) the tornado travels, by this model:

$$
s=93 \log d+65
$$

On March 18, 1925, a tornado whose wind speed was about 280 mph struck the Midwest United States. Estimate how far the tornado traveled.

M301.U3.L6 Graphing Logarithms with Transformations.notebook

Your Turn:

a. Welders wear helmets fitted with a filter shade to protect their eyes from the intense light. The filter shade number, N is defined by the function

$$
N=\frac{7(-\log T)}{3}+1
$$

where T is the fraction of visible light that passes through the filter.

A shade number of 12 is suggested for arc welding. What fraction of visible light is passed through the filter to the welder, as a percent to the nearest ten thousandth?
b. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number F, of flower species that a butterfly feeds on and the number B, of butterflies observed can be modeled by the function

$$
F=-2.641+8.958 \log B
$$

Predict the number of butterfly observations in a region with 25 flower species.

Homework

1. Assignment Handout:

BLM "Section 8.2 Transforming Logarithmic Functions"
2. Text Pages 389-391, Exercises \# 1,4-14, 16, 17, C1, C3
(0) Translations Assignment 1.doc

