#### M301.U3.L6 Graphing Logarithms with Transformations.notebook

# 8.2 <u>Graphing Logarithms and Transformations</u> Lesson 6

Explaining the effects of the parameters a, b, h, and k in  $y = a \log_c (b(x-h)) + k$ on the graph of  $y = \log_c x$  where c > 1

From your knowledge of transformations, predict the effects of the parameters a, b, h, and k in  $y = a \log_c (b(x-h)) + k$  on the graph of the logarithmic function  $y = \log_c x$ , in the table below.

| Parameter | Effect on the basic function graph |
|-----------|------------------------------------|
| а         |                                    |
| b         |                                    |
| h         |                                    |
| k         |                                    |

Only parameter \_\_\_\_ changes the \_\_\_\_\_ and the \_\_\_\_\_ . None of the parameters change the \_\_\_\_\_ .

The following table shows, in mapping notation, how each parameter affects the point (x, y) on the graph of  $y = \log_c x$ 

| Parameter | Transformation                                    | 8 <b>^</b> y |
|-----------|---------------------------------------------------|--------------|
| а         | $(x, y) \rightarrow (x, ay)$                      |              |
| Ь         | $(x, y) \rightarrow \left(\frac{1}{b}x, y\right)$ |              |
| h         | $(x, y) \rightarrow (x+h, y)$                     |              |
| k         | $(x, y) \rightarrow (x, y+k)$                     |              |

If the blue graph is  $y = \log_2 x$ 

Can you write the equations for the red graph:

pink graph:

black graph:

Where would you sketch the graph  $y = \log_2(x-4)$  ?

# Example 1:

a. Sketch the graphs of  $y = \log_4 x$  and  $y = \log_4 (x+4) - 5$  on the same grid.



b. State the domain, range x-intercept, y-intercept, and the equation of the asymptote.

### <u>Your turn</u>:

a. Sketch the graphs of  $y = \log_3 x$  and  $y = \log_3 (x+9) + 2$  on the same grid.

)

,

,



b. State the domain, range x-intercept, y-intercept, and the equation of the asymptote.

Example 2: Reflections, Stretches and Translations of Logarithmic Functions.

a. Use transformations to sketch the graph of  $y = -\log_2(2x+6)$ 



| $y = \log_2 x$ |   |   |   |   |   |  |
|----------------|---|---|---|---|---|--|
| (              | , | ) | ( | , | ) |  |
|                |   |   |   |   |   |  |
|                |   |   |   |   |   |  |

b. Identify the equation of the asymptote, the domain and range, and any intercepts, if they exist.

### M301.U3.L6 Graphing Logarithms with Transformations.notebook





| ( | , | ) | ( , ) |
|---|---|---|-------|
|   |   |   |       |
|   |   |   |       |

b. Identify the equation of the asymptote, the domain and range, and any intercepts, if they exist.

# Example 3: Determine the Equation of a Logarithmic Function Given Its Graph

The red graph can be generated by stretching the blue graph of  $y = \log_4 x$ . Write the equation that describes the red graph.



# Try this one:

The red graph can be generated by stretching and reflecting the blue graph of  $y = \log_4 x$ . Write the equation that describes the red graph.



Example 3: Applications of Logarithmic Functions

a. The pH of a solution is given by the formula  $pH = -\log[H^+]$ 

where  $\begin{bmatrix} H^+ \end{bmatrix}$  is the solution's hydrogen ion concentration (in moles per litre). Find the pH of the solution.

- i. lemon juice:  $[H^+] = 1 \times 10^{-2.4}$  moles per litre ii. vinegar:  $[H^+] = 1 \times 10^{-3}$  moles per litre
- iii. orange juice:  $[H^+] = 1 \times 10^{-3.5}$  moles per litre

b. The Richter scale, used for measuring the magnitude, R, of an earthquake, is given by the model

$$R = 0.67 \log(0.37E) + 1.46$$

where E is the energy (in kilowatt-hours) released by the earthquake.

Suppose an earthquake releases 15 500 000 000 kilowatt-hours of energy. What is the earthquakes magnitude?

c. Most tornadoes last less than one hour and travel less than 20 miles. The wind speed s (in miles per hour) near the center of the tornado is related to the distance d (in miles) the tornado travels, by this model:

$$s = 93 \log d + 65$$

On March 18, 1925, a tornado whose wind speed was about 280 mph struck the Midwest United States. Estimate how far the tornado traveled.

### Your Turn:

a. Welders wear helmets fitted with a filter shade to protect their eyes from the intense light. The filter shade number, N is defined by the function

$$N = \frac{7(-\log T)}{3} + 1$$

where T is the fraction of visible light that passes through the filter.

A shade number of 12 is suggested for arc welding. What fraction of visible light is passed through the filter to the welder, as a percent to the nearest ten thousandth?

b. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number F, of flower species that a butterfly feeds on and the number B, of butterflies observed can be modeled by the function

$$F = -2.641 + 8.958 \log B$$

Predict the number of butterfly observations in a region with 25 flower species.

### M301.U3.L6 Graphing Logarithms with Transformations.notebook



1. Assignment Handout: BLM "Section 8.2 Transforming Logarithmic Functions"

2. Text Pages 389 - 391, Exercises # 1,4 - 14, 16, 17, C1, C3



Translations Assignment 1.doc