8.3 Laws of Logarithms

Investigate: Show that $\log (1000 \times 100) \neq(\log 1000)(\log 100)$
a. Use a calculator to find the approximate value of each expression. State your answer to four decimal places.
i. $\log 6+\log 5$
ii. $\log 30$
iii. $\log 11+\log 9$
iv. $\log 99$
v. $\log 7+\log 3$
vi. $\log 21$
b. Based on the results in part a., suggest a possible law for $\log M+\log N$ where M and N are positive real numbers.
c. Use your conjecture from part b. to express $\log 1000+\log 100$ as a single logarithm.

Show that $\quad \log \frac{1000}{100} \neq \frac{\log 1000}{\log 100}$
a. Use a calculator to find the approximate value of each expression. State your answer to four decimal places.
i. $\log 48-\log 4$
ii. $\log 12$
iii. $\log 35-\log 5$
iv. $\log 7$
v. $\log 72-\log 2$
vi. $\log 36$
b. Based on the results in part a., suggest a possible law for $\log M-\log N$ where M and N are positive real numbers.
c. Use your conjecture from part b. to express $\log 1000-\log 100$ as a single logarithm.

Show that $\log 1000^{2} \neq(\log 1000)^{2}$
a. Use a calculator to find the approximate value of each expression. State your answer to four decimal places.
i. $3 \log 5$
iii. $4 \log 2$
ii. $\log 125$
v. $2 \log 7$
iv. $\log 16$
vi. $\log 49$
b. Based on the results in part a., suggest a possible law for $P \log M$ where M is a positive real number, and P is any real number.
c. Use your conjecture from part b. to express $2 \log 1000$ as a logarithm without a coefficient.

Laws of Logarithms:

> Product Law of Logarithms: $\log _{c} M N=\log _{c} M+\log _{c} N$
> Quotient Law of Logarithms: $\log _{c} \frac{M}{N}=\log _{c} M-\log _{c} N$
> Power Law of Logarithms: $\quad \log _{c} M^{P}=P \log _{c} M$

These laws are true for a logarithm with any base that is a positive real number other than 1. Without a calculator, evaluate each of the following.
a. $\log _{6} 18+\log _{6} 2$
b. $\log _{2} 40-\log _{2} 5$
C. $4 \log _{9} 3$

Example 1: Write each expression in terms of individual logarithms of x, y, and z.
a. $\log _{5} \frac{x y}{z}$
b. $\log _{7} \sqrt[3]{x}$
c. $\log _{6} \frac{1}{x^{2}}$
d. $\log \frac{x^{3}}{y \sqrt{z}}$

Your Turn: Write each expression in terms of individual logarithms of x, y, and z.
a. $\log _{6} \frac{x}{y}$
b. $\log _{5} \sqrt{x y}$
c. $\log _{3} \frac{9}{\sqrt[3]{x^{2}}}$
d. $\log \frac{x^{5} y}{\sqrt{z}}$

Example 2: Use the laws of logarithms to simplify and evaluate each expression.
a. $\log _{6} 8+\log _{6} 9-\log _{6} 2$
b. $\log _{7} 7 \sqrt{7}$
c. $2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right)$

Your Turn: Use the laws of logarithms to simplify and evaluate each expression.
a. $\log _{5} 1000-\log _{5} 4-\log _{5} 2$
b. $\log _{3} 9 \sqrt{3}$
c. $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$

Example 3: Write each expression as a single logarithm in simplest form. State the restrictions on the variable.
a. $\log _{7} x^{2}+\log _{7} x-\frac{5 \log _{7} x}{2}$
b. $\log _{5}(2 x-2)-\log _{5}\left(x^{2}+2 x-3\right)$

Your Turn: Write each expression as a single logarithm in simplest form. State the restrictions on the variable.
a. $4 \log _{3} x-\frac{1}{2}\left(\log _{3} x+5 \log _{3} x\right)$
b. $\log _{2}\left(x^{2}-9\right)-\log _{2}\left(x^{2}-x-6\right)$

Application:

Recall that the $p H$ of a solution is defined as $p H=-\log \left[H^{+}\right]$

Where is the hydrogen ion concentration in moles per litre (mol / L)
A common ingredient in cola drinks is phosphoric acid, the same ingredient in many rust removers. A cola drink has a pH of 2.5. Milk has a pH of 6.6. How many times as acidic as milk is a cola drink?

An apple is 5 times as acidic as a pear. If a pear has a pH of 3.8 , then what is the pH of the apple?

Homework

1. Assignment Handout
"BLM Section 8.3 Laws of Logarithms"
2. Text Pages 400-403, Exercises \# 1-3,5-17, C1
(0) Translations Assignment 1.doc
