Laws of Logarithms:

Product Law of Logarithms: $\log _{c} M N=\log _{c} M+\log _{c} N$
Quotient Law of Logarithms: $\log _{c} \frac{M}{N}=\log _{c} M-\log _{c} N$
Power Law of Logarithms: $\quad \log _{c} M^{P}=P \log _{c} M$

> Also useful: Given $c, L, R>0$ and $c \neq 1$, $\quad \bullet$ if $\log _{c} L=\log _{c} R$, then $L=R$ \bullet if $L=R$, then $\log _{c} L=\log _{c} R$

Example 1: Solve the following logarithmic equations algebraically
a. $\log _{6}(2 x-1)=\log _{6} 11$
b. $\quad \log (8 x+4)=1+\log (x+1)$
c. $\log _{2}(x+3)^{2}=4$

Your Turn:
a. $\log _{7} x+\log _{7} 4=\log _{7} 12$
b. $\log _{2}(x-6)=3-\log _{2}(x-4)$
c. $\log _{3}\left(x^{2}-8 x\right)^{5}=10$

Example 2: \quad Solving Exponential Equations Using Logarithms.
a. $\quad 4^{x}=605$
Method I: Take the log of both sides

Method II: Convert to logarithmic form
b. $\quad 8\left(3^{2 x}\right)=568$
c. $4^{2 x-1}=3^{x+2}$

Your Turn: Solve.
a. $\quad 2^{x}=2500$
b. $\quad 5^{x-3}=1700$
c. $6^{3 x+1}=8^{x+3}$

Example 3: Modeling Using Logarithmic and Exponential Equations.

Exponential Growth:

A town has a current population of 12468 . The population is growing by 2% per year.
a. Write an exponential equation to model the population growth.
b. What will be the towns population in 8 years?
c. When will the population first reach 20000 people?

Exponential Growth:

The population of a high school is growing by 1.5% per year. Currently, there 974 students in the school.
a. Write an exponential equation to model the population of the school, p, after \dagger years.
b. What high school population should be expected in 5 years?
c. When will the population of the school reach 1200 students?

A business invests $\$ 450000$ in new equipment. For tax purposes, the equipment is considered to depreciate in value by 20% each year.
a. Write an exponential equation to model the value of the equipment.
b. What will be the value of the equipment in 3 years?
c. When will the value first drop to $\$ 100000$?

When an animal dies, the amount of radioactive carbon-14 starts to decrease at a predictable rate. Archaeologists use this fact about C-14 in order to determine the age of fossils. the half-life of $C-14$ is 5730 years.
a. The oldest bones unearthed at Head-Smashed-In Buffalo Jump had 49.5\% the C - 14 left. How old were the bones when they were found.

Paleontologists can estimate the size of a dinosaur using only the skull. For a carnivorous dinosaur, the relationship between the length, s, in meters, of the skull and the body mass, m, in kilograms, can be expressed using the logarithmic equation,

$$
3.6022 \log s=\log m-3.4444
$$

a. Determine the body mass, to the nearest kilogram, of an Albertosaurus with a skull length of 0.78 m .
b. To the nearest hundredth of a metre, what was the skull length of a Tyrannosaurus Rex with an estimated body mass of 5500 kg .

Exponential And Lugarithmic Functions Unit Test in 2 Days!!!

Homework

1. Assignment Handout BLM Section 8.4
"Solving Exponential and Logarithmic Functions"
2. Text Pages 412-415, Exercises \# 1-18, 20-22, C1
(0) Translations Assignment 1.doc
