Year End Review

Radical, Rational and Composite Functions

The correct graph of $y = \sqrt{f(x)}$ is

- 2. Compared to the graph of y = f(x), the graph of $y = \sqrt{f(-x-3)} 5$ will be reflected in the A. x-axis and translated 3 units to the right and 5 units down.
 - **B.** y-axis and translated 3 units to the right and 5 units down.
 - C. x-axis and translated 3 units to the left and 5 units down.
 - **D.** y-axis and translated 3 units to the left and 5 units down.
- 3. The restriction on the variable for the equation $\sqrt{x^2-9}-2x+5=0$ are
 - **A.** $x \neq 0$ **B.** $x \neq -3, 3$
 - **C.** $-3 \le x \le 3$
 - **D.** $x \le 3, x \ge 3$

4. The equation $\sqrt{x^2 - 4x + 3} = -\sqrt{x^2 + x - 6}$ has

- A. 1 solution
- **B.** 2 solutions
- C. no solution
- **D.** infinitely many solutions

5. If a, b, c and d are all equal to 2, the value of x in the equation $ax + b = -\sqrt{c - dx^2}$ is

- **A.** −1
- **B.** −0.5
- **C.** 0
- **D.** 1

- **6.** The roots of a rational equation correspond to the ______ of the graph of the related related rational function.
 - A. y-intercepts
 - **B.** x-intercepts
 - C. vertical asymptotes
 - **D.** horizontal asymptotes
- 7. Determine the vertical asymptote of $y = \frac{1}{x^2 + 1}$
 - **A.** x = 0
 - **B.** x = -1
 - **C.** x = 1 or -1
 - **D.** There is no vertical asymptote.

8. The x-intercepts of
$$y = \frac{x^2 + 3x - 4}{x + 5}$$

- **A.** −5 **B.** −4 and 1
- **C.** 4, −1, and −5
- **D.** -0.8

9. As the function $y = \frac{x-2}{(x-1)(x-3)}$ approaches x=1 from the right side, the value of the function

will be

- A. constant
- **B.** increasing
- C. undefined
- **D.** decreasing

10. The restriction on the variable of the rational function $f(x) = \frac{2x+2}{x^2 - x - 2}$ are

A. $x \neq 2$ B. $x \neq -2$ C. $x \neq -1$ D. $x \neq -1, 2$

11. $f = \{(-2, 1), (-1, 4), (0, 5), (4, 8)\}$ and $g = \{(-4, 1), (-1, 0), (1, 5), (4, -3)\}$ What is g(f(-1))? **A.** -3 **B.** -1

- **C.** 0
- **D.** 5

12. If $h(x) = \frac{1}{(x-1)^3}$, and if h(x) = f(g(x)), which of these statements could be correct? A. $f(x) = x^3$, and $g(x) = \frac{1}{x-1}$ B. $f(x) = x^3$, and $g(x) = \frac{1}{x-3}$ C. $f(x) = \frac{1}{x^3}$ and g(x) = x-3D. $f(x) = \frac{1}{x^3}$ and g(x) = x-1

13. Two functions are given.

$$f(x) = x^3 \qquad g(x) = \sqrt{x^2 - 4}$$

Some operations involving the given functions are as follows:

I.
$$h(x) = 2f(x)$$
 II. $h(x) = (g(x))^2$ III. $h(x) = (f(x))^{\frac{1}{3}}$ IV. $h(x) = 2f(x)$

Which of the functions h(x) have domain restrictions?

- **A.** II and IV only**B.** II and III only
- C. I, II, and IV only
- D. I, II, III, and IV

14. The function $h(x) = 2 - \sqrt{x^2 - 4}$ undergoes an operation that results in the new function

- $g(x) = 8 x^2$. The operation on h(x) to give g(x) was to,
 - A. square h(x).
 - **B.** add h(x) to itself.
 - **C.** take the square root of h(x).
 - **D.** multiply h(x) by its conjugate.

15. Two graphs of functions f(x) and g(x) are shown.

The graph of h(x) = 2f(x) - g(x) would be

Numeric Response:

- 1. The radical function $y = \sqrt{f(x)}$ has an x intercept at x = 2. If the graph of the function is stretched horizontally by a factor $\frac{1}{4}$ about the y axis, the new x intercept will be _____.
- 2. The point (4, 10) is on the graph of the function $f(x) = k\sqrt{3(x-1)} + 4$. The value of k is
- 3. The real number that is exactly one-third of its square root, to the nearest hundredth, is______.
- 4. The function $y = \frac{x}{x-2} + 3$ has an domain of $\{x \mid x \neq a, x \in R\}$ and a range of $\{y \mid y \neq b, y \in R\}$.

The value of $a \times b$ is _____.

5. The equation
$$\frac{8}{x^2 - 16} + 1 = \frac{1}{x - 4}$$
 has ______ roots.

- 6. The solution to the equation $4 + \sqrt{x+4} = x-5$, rounded to the nearest tenth, is _____.
- 7. If $f(x) = \sqrt{2x-1}$ and $g(x) = x^2$, the value of $g(f(13)) \times g(g(4))$ equals _____.
- 8. If $f(x) = x^2$ and $g(x) = -2x^2 + 25x$, the x-intercepts of (f+g)(x), stated from largest to smallest would be _____.
- 9. Given that $f(x) = x^2 1$ and g(x) = -2x, the absolute value of $(f \bullet g)(5)$ is _____.

Written Response:

1. On a clear day, the distance to the horizon, *d*, in kilometres, is given by $d = \sqrt{12.7h}$, where *h* is the height above ground, in metres, from which the horizon is viewed. If you can see a distance of 32.5 km from the roof of a building, how tall is the building, to the nearest tenth of a metre?

2. The point (4, y) is on the graph of $f(x) = \sqrt{x}$. The graph is transformed into g(x) by a horizontal stretch by a factor of 2, a reflection about the *x*-axis, and a translation up 3 units. Determine the coordinates of the corresponding point on the graph of g(x).

3. a) Describe two methods you could use to solve the equation $2(2x+1) = \frac{3x^2 - 12x - 5}{x - 4}$ graphically.

b) Use one of the methods from part a) to solve the equation.

- **4.** a) Sketch the graph of the function $y = \frac{x+2}{x^2-4}$.
 - **b**) Identify the domain, range, and asymptotes of the function.
 - c) Explain the behaviour of the function as the value of |x| becomes very large.

5. Let $f(x) = x^2 - 9$ and $g(x) = \sqrt{x}$, sketch the graph of $(f \circ g)(x)$ and state its domain and range.

6. Consider the functions $f(x) = x^2$ and $g(x) = 2^x$.

- **a**) Determine the equation of $h(x) = \frac{f(x)}{g(x)}$, and state the domain of h(x).
- **b**) How does the graph of h(x) behave for large values of x?