Math 30-1 Chapters 4, 5 & 6 Review		Name ___________________________
Trigonometry	
· 

  questions on last diploma were TRIG; 4 of those questions were standard of excellence ( of the test is standard of excellence)
· 1 question from outcome 1;  1 question from outcome2;  3 questions from outcome 3;  2 questions from outcome 4;   3 questions from outcome 5;  3 questions from outcome 6			
Outcome 1:  Angles in Standard Position, Degrees and Radians, Arc Length       
· Rotate counter-clockwise for positive angle, clockwise for negative
· CO-TERMINAL means if the angles were drawn, their terminal arms would overlap
· 

Reference angles are always POSITIVE and measure  . . .always relative to the axis
· 

[image: ]Formula involving ARC LENGTH is on formula sheet  BUT only works if  is in RADIANS
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Outcome 2:  Apply Equation of Unit Circle       
· 
 Equation of unit circle is 
· Any point on the unit circle should “satisfy” the equation
· 

You can sub in an -coordinate to solve for the coordinate of a point (or vice versa)
· If you are given the coordinates of a point on the unit circle . .. 
· 
The -coordinate represents the COSINE ratio of the angle
· 
The -coordinate represents the SINE ratio of the angle

[image: ][image: ]


Outcome 3:  Solve Problems involving the SIX trig ratios
· If given a trig ratio you would know 2 out of 3 sides of a right angle triangle and you can use pythagorean theorem to find the third side
· 
Look for restrictions on  that will tell you which QUADRANT to draw the triangle in
· Exact values of trig ratios can be found using EITHER the points on the unit circle OR the special triangles
· Given a trig ratio, you can find an angle using the INVERSE or 2nd button on your calculator
· 
Remember, given  there are 2 angles with the same trig ratio
· 

Example:   and 
· Use your CAST rule to help you find all the angles
· 


Knowing the coordinates of your QUADRANTALS will help with the and ratios of 
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Outcome 4:  Graph and Analyze Trig Functions
· 

 Given a graph, you may be asked to write the equation in the form   or  
· Recall:
· 

 is the amplitude of the wave 
· 


 is the RATIO of the regular period  to the new period 
· 
 is the phase shift
· 

 is the vertical displacement (the y-value of the middle of the wave)  
· 
Domain is 
· 
Range is 
· Tangent functions
· Have NO amplitude
· 
Have a period of !!!
· Ferris Wheel
· 
The radius of the wheel = 
· 
the time it takes to complete one revolution is the PERIOD . ..  
· 
 would be the height of the CENTER of the wheel off the ground.
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Write the equation in the form  also.

Outcome 5:  Solve Trig Equations
[image: ][image: ][image: ]
· 
FIRST you must use an IDENTITY to replace   . . . . 
· Then you can factor the new equation and solve
· To address the “domain”
· 

Find any solutions from  to 
· 

Find any solutions from  to 
· These will be angles in quadrants III and IV
· You will rotate in a NEGATIVE direction to reach these angles
· This equation can be solved by factoring the equation as a DIFFERENCE OF SQUARES  
· 
Once factored, set each factor to zero and solve 
· 

There would be 4 solutions if the domain was  BUT the domain is really so you write all the anlges CO-TERMINAL to each of your solutions
· 
This equation can be solved by taking out a common factor  
· 
Once factored, set each factor to zero and solve 
· 
There would be 4 solutions if the domain was  BUT the domain is restricted so there are only 2 solutions.

[image: ]· 

The equation is ALREADY in factored form . . . set each factor = 0 , isolate the , and reciprocate the ratio to solve for 
· 

One equation at a time, enter left side as  and right side as 
· 

 , 
· Make sure you’re in DEGREE MODE
· Find intersection points







[image: ][image: ]
· 
 To solve this graphically, enter 
· 

 , 
· find intersection points and determine which general solutions match
· 
To solve this algebraically, use the IDENTITY for , factor and solve.

Outcome 6:  Trig Identities
· All identities can be found on your formula sheet
· 
VERIFYING – substitute a given value in for  and showing that the LS and RS come out to the same value
· PROVING –use identities involving trig ratios to show that both sides of the equation simplify to the same trig expression
· 

RESTRICTIONS (NON-PERMISSIBLE VALUES) . . . denominators  0  & there are “hidden restrictions” in  
· [image: ][image: ]Restictions are always written as a GENERAL SOLUTION

[image: ][image: ][image: ]

[bookmark: _GoBack][image: ][image: ][image: ][image: ][image: ]This is an identity . . . expand and use exact values to solve.
These are just the “restictions” . . .not really important to the solving of this question.
· 
You know the “exact” values for 
· There are SUM or DIFFERENCE identities that will allow you to solve this question
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image58.png
For the graph of the function f(x)=-3 sin[2(x — 5)] + d the following statements were

made.

Statement 1
Statement 2
Statement 3

Statement 4

Statement 5

The amplitude is 3.
The maximum value is (d - 3).

The period is 27.

‘When compared to the graph of g(x)=—3sin(2x) + d. the graph of
y = f(x) has been horizontally translated 5 units to the right.

If d >3, then the graph of y = f(x) will have no x-intercepts.
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The number of true statements about the graph of y = f(x) from the list above is

A1
B. 2
*C. 3
D. 4
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The angle IST”, converted to degrees, is
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An angle, in radians, that is co-terminal with 30° is

_Sm
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An angle, 6. in standard position, is shown below.
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The best estimate of the rotation angle 6 is

A.  1.25 radians
B. 3.12radians
‘C. 401 radians
D. 5.38radians
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Mary is given the diagram below, showing an angle rotation of 120° The arc length of the

sector is 40 cm.

Statement 1

Statement 2

Statement 3

Statement 4

gy

The radius of the circle, to the nearest centimetre, is 19 cm.

An equivalent angle rotation is 4?”

If the arc length on this circle increases to 80 cm, then the central

angle must be 240°.

Mary can determine the radius of the circle by dividing the given angle
by the arc length.
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The two statements above that are correct are numbered and
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A circle with a radius, r, an arc length of 347, and two central angles of & 1_5 and 117—57[ is

shown below.

34n

The value of @ in the angle tlI_S is be.

The length of the radius, r, of the circle, to the nearest whole number, is de.
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The values of a and b are, respectively, and
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Point A(g, %) and point B(* g, g) lie on the terminal arm of two different angles in

standard position. The angle, 8, where 0 < 6 < 7, can be expressed in the form %A

y
4
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The values of b, ¢, d. and e are, respectively, . . .and
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For the angles the following statements are given.

Statement 1~ They all have the same reference angle.

Statement 2 These angles in degrees are, respectively, 30° 150°, 210° and 300°.

E

6+2n7l',nelA

Statement 3 They are all part of the solution set 6 =

Statement 4  The values of sin (%) and sin (5?7[) are positive.
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The two statements that are true from the list above are numbered and




image61.png
If the particular point starts at the minimum height above the ground, then write an equation
for the height of this point on the Ferris wheel, &, as a function of time, #, in the form
h= acos[b(r - c)]+ d.
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The height of a point on a Ferris wheel, /1, in metres above the ground. as a function of time,
1. in seconds can be represented by a sinusoidal function. The maximum height of the Ferris
wheel above the ground is 17 m and the minimum height is 1 m. It takes the Ferris wheel 60
seconds to complete two full rotations.
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On a unit circle, if Point p(, %, :—%) lies on the terminal arm of an angle in standard

position, what are the exact values of the 6 trigonometric ratios?
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If the point P(0.2, k) lies on a circle with a centre at the origin and a radius of 1. then the
exact value of k can be expressed as +Vb.
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For the equation 2cos’x+ sinx — 1= 0, find all values of x, where —7 <x <7.
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Determine a general solution of tan?0 —1=0, expressed in radians.
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Solve for 6, where 180° <6 < 360°, in the equation 2c0s20 + cos 0 =0.
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Graphically solve for 6, where —180° <6 < 0°, given (2 — V3 sec H)(sec 6+ 3) =0. State
answers to the nearest degree.
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The two students who provided a correct general solution are numbered

A. land3
B. land4
C. 2and3

‘D. 2and 4
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A Mathematics 301 class was asked to determine a general solution to the equation
sin(26) — cos @ = 0, in degrees. The answers provided by four different students are shown
below.

Student 1 6 =60°+ n(120°), nel

Student2 6 =90°+ n(360°), nel, and 6 =30°+ n(120°), nel

Student3 6 = n(180°), 6 =60°+ n(360°), and 8 =300°+ n(360°), nel
Student4 6 =90°+ n(180°), 6 =30°+ n(360°), and 6 =150°+ n(360°), n<l




image88.wmf
q


oleObject57.bin

image89.wmf
¹


oleObject58.bin

image90.wmf
tan,cot,sec,&csc

qqqq


oleObject59.bin

image91.png
a2
i i ity S @—1_ 6. where cos@ # 0.
Three students were given the identity S eos@ —Cos
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o
3

entered LS into y; and RS into y, and concluded that the graphs are exactly the same.

a)  Student A substituted in @ = to both sides of the equation and got LS = RS. Student B

Explain why these methods are not considered a proof of this identity.
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The expression M%, where secx #—1, is equivalent to
secx

A, sinx
B. tanx
csex

cotx





image94.png
¢)  Which non-permissible values of @ should be stated for this identity?
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b) Student C correctly completed an algebraic process to show LS = RS. Show a process
Student C might have used.
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Given that sinf = 7%, and cotf < 0. determine the exact value of 005(9 - ZT”)
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2 tanx sin (2x) T, nw
= 5= where x #++

—tan’x  cos’x — sin’x 42

Prove algebraically that nel.
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‘What is the exact value of tan75°?
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‘When the numerical values of the simplified expressions are arranged in ascending order,
the expression numbers are . . . and .
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Each trigonometric expression below can be simplified to a single numerical value.
1 cot’x—csc’x

2 sechx— tan’x

3 sipy—lanx
secx
4 lcosch + L in’x

7 7
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Given that ¢scf = 7%, where T <6 < determine the exact value of tan6.

2 g
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Determine the exact value of sin(fg + cos(?T”)A
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Use the following code to indicate that the value of the ratio is zero, or that the ratio is
undefined.

1 = The value of the ratio is zero.
2 = The ratio is undefined.

Ratio: tan (E) cot (3—”) sin7r csc (271')

S
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Each of the trigonometric ratios listed below results in a value of zero, or is undefined.

)

cot! (377[)

sin7

cse (271')
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If tan0 = %, where 0 <6 <27, then the largest positive value of 6, to the nearest tenth,

is rad.
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For the function y = acos @ + d, the range is [-4, 10]. What are the values of @ and d?
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For the function y =sin(3x + ) + 7, what is the phase shift and period of the corresponding
graph?
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Given that f(0) = cos(nG) has the same period as the graph of g¢(6) = tan, the value
of nis
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The partial graph of the cosine function below has a minimum point at (%, 72) and
a maximum point at (77, 8). The equation of the function can be expressed in the form
y=acos(bx)+d.

5+
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‘What are the values of a, b, and d?




