M30-3 Tolerances Assignment (MathWorks 12 Workbook pg. 102-104)

Name: <u>FEY</u>

1. Complete the following table.

TOLERANCES				
Nominal value	Minimum value	Məximum value	Tolerance	± range
115 mm	112mm	112mm	6 mm	± 3 _{mm}
15 cm	12.5 cm	17.5 cm	5cm	± 2.5cm
90°F	85°F	95°F	10°F	± 5°F
3 <u>3</u> "	35	3 ?"	1"	17

- 2. Munita is making custom kitchen cabinets. The front face of a drawer must have a width between $17\frac{15}{16}$ and $18\frac{1}{16}$ and a height between $6\frac{15}{16}$ and $7\frac{1}{16}$.
 - a) What are the nominal dimensions of the drawer face?

b) What is the tolerance in the measurements?

$$\frac{1}{16} + \frac{1}{16} = \frac{2}{16}$$

c) Write the width and height in the form nominal value $\pm \frac{1}{2}$ (tolerance).

width
$$18" \pm \frac{1}{16}"$$

height $7" \pm \frac{1}{16}"$

- 3. A chemical mixture in a manufacturing process needs to reach a nominal temperature of 10.0°C, with a tolerance of 0.5°C. 10.0° C $\pm 0.25^{\circ}$ C
 - a) What are the minimum and maximum acceptable temperatures? Write them in the form maximum value .

$$max:mum = 10.0^{\circ}C + 0.25^{\circ}C$$
 $m:n:mum = 10.0^{\circ}C - 0.25^{\circ}C$ $= 9.75^{\circ}C$ $= 9.75^{\circ}C$

b) Write the temperature in the form nominal value $\pm \frac{1}{2}$ (tolerance).

4. A medication specifies that it contains 0.0406 mg \pm 0.0001 mg of a specified drug. Calculate the tolerance and the maximum and minimum quantities of the drug present in the medication.

$$max = 0.0406 mg + 0.0001 mg$$
 $min = 0.0406 mg - 0.0001 mg$ $tolerake = 0.0407 mg - 0.0405 mg$ $= 0.0407 mg$ $= 0.0405 mg$

- 5. Junichi is tiling a roof. The building code specifies that roof tile may have an overhang of a maximum of 64 mm and a minimum of 35 mm.
 - a) Calculate the nominal overhang for a roof tile.

nominal overhay =
$$\frac{64mm + 35mm}{2}$$
 = 49,5mm

b) Express the tolerance in the form nominal value $\pm \frac{1}{2}$ (tolerance).

tolernue =
$$64mn - 35mn$$

= $29mn$
= $\frac{1}{49.5mn} \pm \frac{1}{4}(29mn)$
= $\frac{1}{49.5mn} \pm \frac{1}{4}(29mn)$