Math 10 C: Exponents \& Radicals

Concept 1: Prime Factorization

Vocabulary

Factors: Factors are the numbers (or terms) that multiply together to get another number.
Prime Number: a whole number with exactly two distinct factors; itself and 1.
Example: 3 is a prime number because it only has two factors - itself and 1
Composite Number: a whole number with three or more factors; a number that is not a prime number.

Example: 4 can be written as 1×4 and 2×2. Therefore 4 has three factors: 1,2 and 4 and is a composite number.

Prime Factors: A factor that is a prime number. One of the prime numbers that, when multiplied, give the original number.

Prime Factorization: writing a number as a product of its prime factors.

Skills:

Factor Tree:
Birthday Cake:

$80=2 \cdot 2 \cdot 2 \cdot 2 \cdot 5$
Therefore,
$80=2^{4} \cdot 5$

Concept 2: Perfect Squares and Square Roots

Vocabulary \& Key Concepts

Perfect Square - a number that can be expressed as the product of two equal integral factors
For example) 9 is a perfect square because $3 \times 3=9$ or $-3 \times-3=9$
Square Root - one of the two equal factors of a number For example) $\sqrt{49}=\sqrt{7 \times 7}$, therefore 7 is the square root of 49 .

Notation:

$$
\sqrt{x}=x^{\frac{1}{2}}
$$

$$
\sqrt{49}
$$

For example) $=49^{\frac{1}{2}}$

$$
=7
$$

Skills
Using Prime Factorization to determine if \#'s are perfect squares.

Example:

Is 576 a perfect square?

.Checking if 576 is
a perfect square 50
need two equal groupings
of prime factors.

$$
\begin{aligned}
576 & =2 \cdot 2 \cdot 2 \cdot 3-2 \cdot 2 \cdot 2 \cdot 3 \\
\therefore \sqrt{576} & =2 \cdot 2 \cdot 2 \cdot 3 \\
& =24
\end{aligned}
$$

Evaluate involving the squaring of numbers.
To evaluate squaring a number the exponent 'goes to' what it is directly beside.

$$
\begin{array}{rll}
& (-3)^{2} & -3^{2} \\
\text { For examples: } & =(-3)(-3) \\
& =9 & \text { vs. } \\
=-3 \times 3 \\
=-9
\end{array}
$$

Evaluating products under square root signs:

$$
\begin{aligned}
& \sqrt{(16)(9)} \\
& =\sqrt{16} \times \sqrt{9} \\
& =4 \times 3 \\
& =12
\end{aligned}
$$

Note: Easier to mentally find the square roots of smaller numbers then multiplying the values together and then taking the square root of the larger number.

Estimating Square Roots

To estimate: use the values of perfect squares that you know as your 'benchmarks' for approximating the values in between.

Memorize the perfect squares (up to 100)

$$
\sqrt{4}=2 ; \sqrt{9}=3 ; \sqrt{16}=4 ; \sqrt{25}=5 ; \sqrt{36}=6 ; \sqrt{49}=7 ; \sqrt{64}=8 ; \sqrt{81}=9 ; \sqrt{100}=10
$$

Example: Approximate the value of $\sqrt{30}$ to the nearest tenth.
$\sqrt{30}$ is between $\sqrt{25}$ and $\sqrt{36}$ so the value must be between 5 and 6 .
The approximate value of $\sqrt{30}$ is 5.4.

Check your Understanding:

1. Use prime factorization to determine if 196 is a perfect square.
2. Evaluate $256^{\frac{1}{2}}$ using prime factorization.
3. Evaluate $\sqrt{(25)(4)}$
4. Approximate the value of $\sqrt{74}$ to the nearest tenth.

Concept 3: Perfect Cubes and Cube Roots

Vocabulary \& Key Concepts

Perfect Cube - a number that can be expressed as the product of three equal integral factors
For example) 8 is a perfect cube because $2 \times 2 \times 2=8$
Cube Root - one of the three equal factors of a number
For example) $\sqrt[3]{27}=\sqrt[3]{3 \times 3 \times 3}$, therefore 3 is the cube root of 27 .
Notation: $\sqrt[3]{x}=x^{\frac{1}{3}}$

$$
\sqrt[3]{27}
$$

For example) $=27^{\frac{1}{3}}$

$$
=3
$$

Skills

Using Prime Factorization to determine if \#'s are perfect cubes.

Example:

Is 576 a perfect cube?

$$
576
$$

$288 \quad$ Checking if 576 is a

perfect cube, need to
be able to make 3
272 equal groups with
1
236 prime factors
人 $576=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$
218
Cannot make 3 equal
29 groups so not a perfect
33 cube (it is a perfect square)

Evaluate involving the cubing of numbers.

To evaluate squaring a number the exponent 'goes to' what it is directly beside.
$(-3)^{3}$
-3^{3}
For examples: $=(-3)(-3)(-3)$
vs. $=-3 \times 3 \times 3$
$=-27$
$=-27$

Note: Answers are the same regardless of whether there are brackets or not.
Evaluating products under cube root signs:

$$
\begin{aligned}
& \sqrt[3]{(64)(27)} \\
& =\sqrt[3]{64} \times \sqrt[3]{27} \\
& =4 \times 3 \\
& =12
\end{aligned}
$$

Note: Easier to mentally find the cube roots of smaller numbers then multiplying the values together and then taking the cube root of the larger number.

Estimating Cube Roots

To estimate: use the values of perfect cubes that you know as your 'benchmarks' for approximating the values in between.

Memorize the following perfect cubes :

$$
\sqrt[3]{1}=1 ; \sqrt[3]{8}=2 ; \sqrt[3]{27}=3 ; \sqrt[3]{64}=4 ; \sqrt[3]{125}=5 ; \sqrt[3]{216}=6 ; \sqrt[3]{343}=7
$$

Example: Approximate the value of $\sqrt[3]{95}$ to the nearest tenth.
$\sqrt[3]{95}$ is between $\sqrt[3]{64}$ and $\sqrt[3]{125}$ so the value must be between 4 and 5 .
The approximate value of $\sqrt[3]{95}$ is 4.5 .

Check your Understanding:

1. Determine if 4096 is a perfect cube (use prime factorization).
2. Evaluate $\sqrt[3]{\frac{27}{125}}$
3. Approximate the value of $\sqrt[3]{74}$ to the nearest tenth.

Concept 4: Mixed and Entire Radicals

Vocabulary \& Key Concepts

Radicals (sometimes called the 'root'): an expression that consists of a root symbol, an index and a radicand

Parts of a radical:

In general:
Index $\sqrt[n]{X}$ Radical

For example:

Radicand - the quantity or expression under the radical sign
Index - indicates what root to take
Mixed Radical - the product of a rational number and a radical. Eg. $3 \sqrt{5}$
Entire Radical - the product of 1 and a radical. Eg. $\sqrt{50}$

Skills

Converting from Entire Radical to a Mixed Radical

Entire radicals can be written as mixed radicals if the radicand has a factor that is a perfect square or perfect cube.

Note: Not all entire radicals can be written as mixed radicals.

Recall: Perfect Squares $\rightarrow 4,9,16,25,36,49,64,81,100,121,144$, etc.
Perfect Cubes $\rightarrow 8,27,64,125,216$, etc.
Ex) Convert $\sqrt{24}$ into a mixed radical.

$$
\begin{aligned}
\sqrt{24} \rightarrow \text { Factors of } 24: 1,24 & \\
2,12 & =\sqrt{24} \\
3,8 & =\sqrt{4 \times 6} \\
4,6 \rightarrow 4 \text { is a perfect square } & =\sqrt{4} \times \sqrt{6} \\
& =2 \sqrt{6}
\end{aligned}
$$

Ex) Convert $\sqrt[3]{54}$ into a mixed radical.

$$
\begin{aligned}
& \sqrt[3]{54} \rightarrow \text { Factors of } 54: 1,54 \\
& 2,27 \rightarrow 27 \text { is a perfect cube } \sqrt[3]{54} \\
&=\sqrt[3]{27 \times 2} \\
&=\sqrt[3]{27} \times \sqrt[3]{2} \\
&=3 \times \sqrt[3]{2} \\
&=3 \sqrt[3]{2}
\end{aligned}
$$

Converting from Mixed Radical to an Entire Radical

Both numbers need to be written as radicals so that we can multiply and simplify.

Note: ALL mixed radicals can be written as entire radicals.

Ex) Write $4 \sqrt{3}$ as an entire radical. $4 \sqrt{3}$

$$
\begin{aligned}
& =\sqrt{4^{2}} \times \sqrt{3} \\
& =\sqrt{16} \times \sqrt{3} \\
& =\sqrt{48}
\end{aligned}
$$

Ex) Write $3 \sqrt[3]{4}$ as an entire radical.

$$
\begin{aligned}
& 3 \sqrt[3]{4} \\
& =\sqrt[3]{3^{3}} \times \sqrt[3]{4} \\
& =\sqrt[3]{27} \times \sqrt[3]{4} \\
& =\sqrt[3]{27 \times 4} \\
& =\sqrt[3]{108}
\end{aligned}
$$

Check your Understanding:

1. Express the following as mixed radicals.
(a) $\sqrt{45}$
(b) $\sqrt[3]{16}$
(c) $80^{\frac{1}{2}}$
2. Express the following as entire radicals.
(a) $4 \sqrt[3]{2}$
(b) $2 \sqrt{8}$
(c) $2 \sqrt[5]{3}$

Concept 5: Exponent Laws (with Rational Bases)

Vocabulary \& Key Concepts

Recall: Laws of Exponents (from Grade 9)

- Multiplying terms with the same base - add the exponents

In general form: $x^{m} \times x^{n}=x^{m+n} \quad$ Example: $2^{2} \times 2^{5}$

$$
\begin{aligned}
& =2^{2+5} \\
& =2^{7}
\end{aligned}
$$

- Dividing terms with the same base - subtract the exponents

In general form: $x^{m} \div x^{n}=x^{m-n} \quad$ Example: $3^{5} \div 3^{2}$

$$
\begin{aligned}
& =3^{5-2} \\
& =3^{3}
\end{aligned}
$$

- Power to a power - multiply the exponents

In general form: $\left(x^{m}\right)^{n}=x^{m \times n}$ Example: $\left(4^{2}\right)^{4}$

$$
\begin{aligned}
& =4^{2 \times 4} \\
& =4^{8}
\end{aligned}
$$

- Power of Zero

In general form: $a^{0}=1$, where $a \neq 0$
Examples: (a) $(-6)^{0}=1$
(b) $-6^{0}=-1$
(c) $\frac{1}{-5^{0}-(-5)^{0}}=\frac{1}{-1-1}$

Skills

Evaluating Powers of the Form $a^{\frac{1}{n}}$

$$
=\frac{1}{-2}
$$

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

Examples:

Write the following expressions as radicals, and then evaluate.
(a) $64^{\frac{1}{3}}$
(b) $(-27)^{\frac{1}{3}}$
(c) $(16)^{\frac{1}{4}}$
$=\sqrt[4]{16}$
$=\sqrt[3]{64}$
$=\sqrt[3]{-27}$
$=-3$
(d) $\left(\frac{9}{16}\right)^{\frac{1}{2}}$
$=\left(\frac{\sqrt[2]{9}}{\sqrt[2]{16}}\right)$ $=\frac{3}{4}$
$=2$

Evaluating Powers with Rational Exponents and Rational Bases

$$
a^{\frac{m}{n}}=\sqrt[n]{a}^{m} \quad \text { OR } \quad a^{\frac{m}{n}}=\sqrt[n]{(a)^{m}}
$$

Examples:

Rewrite the following in another form, then evaluate.
(a) $8^{\frac{2}{3}}$
$8^{\frac{2}{3}}$

$$
\begin{array}{ll}
=\left(8^{2}\right)^{\frac{1}{3}} & \\
=\left(8^{\frac{1}{3}}\right)^{2} \\
=\sqrt[3]{8^{2}} & \text { or } \\
=(\sqrt[3]{8})^{2} \\
=4 & \\
=4 & =(2)^{2} \\
& =4
\end{array}
$$

(b) $25^{\frac{3}{2}}$

$$
=\sqrt[2]{25^{3}}
$$

(c) $\left(\frac{1}{4}\right)^{\frac{5}{2}}$

$$
=(\sqrt[2]{25})^{3}
$$

$$
=\left(\frac{\sqrt{1}}{\sqrt{4}}\right)^{5}
$$

$$
=5^{3}
$$

$$
=125
$$

$$
=\left(\frac{1}{2}\right)^{5}
$$

Evaluating Powers with Negative Integer Exponents

$$
=\frac{1}{32}
$$

$$
a^{-n}=\frac{1}{a^{n}}, \text { where } a \neq 0
$$

Examples:

Evaluate the following:
(a) 3^{-2}
(b) -4^{-2}
$=-1(4)^{-2}$
(c) $\left(\frac{3}{2}\right)^{-2}$
(d) $3^{-2}+3^{-1}$
$=\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{1}$
$=\left(\frac{1}{3}\right)^{2}$
$=-1\left(\frac{1}{4}\right)^{2}$
$=\left(\frac{2}{3}\right)^{2}$
$=\frac{1}{9}+\frac{1}{3}$
$=\frac{1}{9}+\frac{3}{9}$
$=\frac{4}{9}$

Evaluating Powers with Negative Rational Exponents

$$
\begin{aligned}
a^{-\frac{m}{n}} & =\left(\frac{1}{a}\right)^{\frac{m}{n}} \\
& =\sqrt[n]{\left(\frac{1}{a}\right)^{m}}
\end{aligned}
$$

Examples:

Rewrite the following in another form, then evaluate.
(a) $27^{-\frac{2}{3}}$
$=\left(\frac{1}{27}\right)^{\frac{2}{3}}$
(b) $\left(\frac{1}{16}\right)^{-\frac{3}{2}}$
$=\left(\frac{\sqrt[3]{1}}{\sqrt[3]{27}}\right)^{2}$
$=\left(\frac{16}{1}\right)^{\frac{3}{2}}$
$=16^{\frac{3}{2}}$
$=\left(\frac{1}{3}\right)^{2}$
$=(\sqrt{16})^{3}$
$=\frac{1}{9}$

$$
=4^{3}
$$

$$
=64
$$

Check your Understanding:

1. Evaluate the following expression.
(a) $\left(\frac{9}{16}\right)^{\frac{1}{2}}$
(b) $49^{\frac{3}{2}}$
(c) $\left(\frac{8}{27}\right)^{\frac{2}{3}}$
(d) $16^{\frac{-1}{2}}$
(e) $\left(\frac{16}{81}\right)^{\frac{-3}{4}}$
2. Write each radical expression with exponents and integral bases.
(a) $\sqrt[5]{4}$
(b) $(\sqrt{5})^{3}$
(c) $\frac{1}{\sqrt[3]{3}}$
(d) $\sqrt[6]{2^{5}}$

Concept 6: Working with Exponents (with Variable Bases)

Vocabulary \& Key Concepts

Skills

Simplifying Algebraic Expressions with Integer Exponents

Examples:
Simplify the following expressions. Leave all exponents as positive values.
(a) $x^{3} y^{-2} \cdot x^{-4} y^{3}$

$$
=x^{3} x^{-4} \cdot y^{-2} y^{3}
$$

(b) $\frac{4 m^{3} n^{-2}}{5 m}$
$=x^{3+-4} \cdot y^{-2+3}$
$=\frac{4}{5} \cdot \frac{m^{3}}{m} \cdot n^{-2}$
$=x^{-1} \cdot y^{1}$
$=\frac{1}{x^{1}} \cdot \frac{y^{1}}{1}$
$=\frac{y^{1}}{x^{1}}$ or $\frac{y}{x}$

$$
=\frac{4}{5} \cdot m^{3-1} \cdot \frac{1}{n^{2}}
$$

$$
=\frac{4}{5} \cdot m^{2} \cdot \frac{1}{n^{2}}
$$

$$
=\frac{4 m^{2}}{5 n^{2}}
$$

Simplifying Algebraic Expressions with Rational Exponents

Examples:
Simplify the following expressions. Leave all exponents positive

$$
\begin{array}{ll}
\text { (a) } \begin{array}{ll}
\left(25 a^{4} b^{2}\right)^{\frac{3}{2}} & \text { (b) } \frac{12 x^{-5} y^{\frac{5}{2}}}{3 x^{\frac{1}{2}} y^{-\frac{1}{2}}} \\
=25^{\frac{3}{2}}\left(a^{4}\right)^{\frac{3}{2}}\left(b^{2}\right)^{\frac{3}{2}} & \\
=(\sqrt{25})^{3}\left(a^{\frac{12}{2}}\right)\left(b^{\frac{6}{2}}\right) & \\
= & =4 \cdot \frac{x^{-5}}{x^{\frac{1}{2}}} \cdot \frac{y^{\frac{5}{2}}}{y^{\frac{-1}{2}}} \\
=5^{3} a^{6} b^{3} & \\
=125 a^{6} b^{3} & =4 \bullet x^{\frac{-10}{2}-\frac{1}{2}} \cdot y^{\frac{5}{2}-\left(-\frac{1}{2}\right)} \cdot y^{\frac{5}{2}+\frac{1}{2}} \\
& =4 \bullet x^{\frac{-11}{2}} \cdot y^{\frac{6}{2}} \\
& =4 x^{\frac{-11}{2}} y^{3} \\
& =\frac{4 y^{3}}{\frac{11}{2}}
\end{array}
\end{array}
$$

Changing from Radical to Exponential Form

Examples:

Write the following radicals in exponential form with positive exponents.
(a) $(\sqrt[3]{25})^{2}$
(b) $\sqrt[3]{\left(\frac{3}{8}\right)^{4}}$
(c) $(\sqrt{3 k})^{-5}$
$=\left(25^{\frac{1}{3}}\right)^{2}$
$\left(\left(\frac{3}{8}\right)^{4}\right)^{\frac{1}{3}}$
$=\frac{1}{\left((3 h)^{\frac{1}{2}}\right)^{5}}$
$=25^{\frac{2}{3}}$
$=\left(\frac{3}{8}\right)^{\frac{4}{3}}$
$=\frac{1}{(3 h)^{\frac{5}{2}}}$

Solving Problems Using Exponent Laws

Example:

Biologists use the formula $b=0.01 m^{\frac{2}{3}}$ to estimate the brain mass, b kilograms, of a mammal with body mass m kilograms. Estimate the brain mass of each animal.
(a) A husky with a body mass of 27 kg

$$
b=0.01 m^{\frac{2}{3}} \rightarrow m=27 \quad b=0.01(27)^{\frac{2}{3}}, ~ \begin{aligned}
b & =0.01(\sqrt[3]{27})^{2} \\
b & =0.01(3)^{2} \\
b & =0.01(9) \\
b & =0.09 \mathrm{~kg}
\end{aligned}
$$

(b) A polar bear with a body mass of 216 kg .

$$
b=0.01 m^{\frac{2}{3}} \rightarrow m=216 \quad b=0.01(216)^{\frac{2}{3}}, ~ \begin{aligned}
b & =0.01(\sqrt[3]{216})^{2} \\
b & =0.01(6)^{2} \\
b & =0.01(36) \\
b & =0.36 \mathrm{~kg}
\end{aligned}
$$

Check your Understanding:

1. Simplify the following. Leave your answer with positive exponents.
(a) $\left(x^{3} y^{-\frac{5}{2}}\right)\left(x^{-1} y^{\frac{1}{2}}\right)$
(b) $\left(\frac{50 x^{2} y^{4}}{2 x^{4} y^{7}}\right)^{-\frac{1}{2}}$
2. Change the following radicals to exponential form.
(a) $\left(\sqrt{\frac{5}{4}}\right)^{3}$
(b) $(\sqrt[3]{-10 x})^{2}$
3. Express each as a single power with a single positive exponent.
(a) $\sqrt{x} \cdot x^{3}$
(b) $\frac{(\sqrt[3]{m})^{4}}{m}$

Concept 7: Number Systems

Vocabulary \& Key Concepts

Real Numbers

- the set of numbers that can be represented as fractions and plotted on a number line.
- Includes all rational and irrational numbers

Rational Numbers (Q)

- Numbers that are expressed in the form $\frac{m}{n}$, where m and n are integers, $n \neq 0$
- When written as a decimal they will terminate or repeat
- The Rational number set includes:
- Integers, $I(\ldots-2,-1,0,1,2 \ldots)$
- Whole Numbers, W ($0,1,2,3 \ldots$)
- Natural Numbers, $N(1,2,3 \ldots)$

Irrational Numbers (\bar{Q})

- A number that cannot be expressed in the form $\frac{m}{n}$ where m and n are integers and $n \neq 0$.
- The decimal representation of an irrational number does not terminate or repeat.

Skills

Classifying Numbers

When asked to classify numbers into number sets - start with the 'smallest' group - Natural numbers - then work your way through more inclusive sets.

Example \#1

Classify the following numbers into the correct number system(s).
(a) $\sqrt{2}$
(b) 3
(c) $1.7171171117 \ldots$

Natural, Whole, Integer, Rational, Real
Irrational
Real
(d) $\frac{3}{5}$
(e) $\sqrt{4}$

Natural, Whole Number
Integer, Rational, Real

Irrational Real
(f) $\sqrt{8}$

Irrational Real
(g) 0
Whole Number
Integer, Rational, Real
(h) π

Irrational
Real

Order Numbers

Use a number line and estimation to order these numbers from least to greatest.
$\sqrt[3]{13}, \sqrt{18}, 9^{\frac{1}{2}}, \sqrt[4]{27},(-5)^{\frac{1}{3}}$

$$
\begin{aligned}
& \text { Perfect Squares } \\
& 1,4,9,16,25,36 \\
& \text { Perfect Cubes } \\
& 1,8,27,64,125 \ldots \\
& \text { Perfect } 4 \text { th root } \\
& 1,16,81
\end{aligned}
$$

$$
\begin{array}{cc}
\sqrt[3]{13} \rightarrow \text { between } \sqrt[3]{8} \text { and } \sqrt[3]{27} & \sqrt[4]{27} \rightarrow \text { between } \sqrt[4]{16} \text { and } \sqrt[4]{81} \\
\vdots 2 \text { and } 3 & \therefore=2 \text { and } 3 \\
\sqrt[3]{13} \approx 2.3 & \sqrt[4]{27} \approx 2.2 \\
\sqrt{18} \rightarrow \text { between } \sqrt{16} \text { and } \sqrt{25} & \sqrt[3]{-5} \rightarrow \text { between } \sqrt[3]{-1} \text { and } \sqrt[3]{8} \\
\therefore 4 \text { and } 5 & \because \text { between }-1 \text { and }-2 \\
& \\
\sqrt[3]{18} \approx 4.2 &
\end{array}
$$

Check your Understanding:

1. Name the sets of numbers to which each number belongs.
(a) $\sqrt{12}$
(b) $\sqrt[4]{16}$
(c) $\sqrt{\frac{4}{9}}$
(d) 1.25
2. Use a number line and estimation to order these numbers from least to greatest.

$$
\sqrt{2},(-2)^{\frac{1}{3}}, \sqrt[3]{6}, 30^{\frac{1}{4}}, 2 \sqrt{5}
$$

