Math 10 C: Exponents & Radicals

Concept 1: Prime Factorization

Vocabulary

Factors: Factors are the numbers (or terms) that multiply together to get another number.

Prime Number: a whole number with exactly two distinct factors; itself and 1. *Example*: 3 is a prime number because it only has two factors – itself and 1

Composite Number: a whole number with three or more factors; a number that is not a prime number.

Example: 4 can be written as 1×4 and 2×2 . Therefore 4 has three factors: 1, 2 and 4 and is a composite number.

Prime Factors: A factor that is a prime number. One of the prime numbers that, when multiplied, give the original number.

Prime Factorization: writing a number as a product of its prime factors.

Concept 2: Perfect Squares and Square Roots

Vocabulary & Key Concepts

Perfect Square - a number that can be expressed as the product of two equal integral factors

For example) 9 is a perfect square because $3 \times 3 = 9$ or $-3 \times -3 = 9$

Square Root – one of the two equal factors of a number

For example) $\sqrt{49} = \sqrt{7 \times 7}$, therefore 7 is the square root of 49.

Notation:

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt{49}$$
For example) = 49^{\frac{1}{2}}
= 7

Skills

Using Prime Factorization to determine if #'s are perfect squares.

Example:

Is 576 a perfect square?

Evaluate involving the squaring of numbers.

To evaluate squaring a number the exponent 'goes to' what it is directly beside.

 $(-3)^2$ -3^2 For examples: =(-3)(-3) vs. $=-3 \times 3$ =9 =-9

Evaluating products under square root signs:

$$\sqrt{(16)(9)}$$
$$= \sqrt{16} \times \sqrt{9}$$
$$= 4 \times 3$$
$$= 12$$

Note: Easier to mentally find the square roots of smaller numbers then multiplying the values together and then taking the square root of the larger number.

Estimating Square Roots

To estimate: use the values of perfect squares that you know as your 'benchmarks' for approximating the values in between.

Memorize the perfect squares (up to 100)

$$\sqrt{4} = 2; \sqrt{9} = 3; \sqrt{16} = 4; \sqrt{25} = 5; \sqrt{36} = 6; \sqrt{49} = 7; \sqrt{64} = 8; \sqrt{81} = 9; \sqrt{100} = 10$$

Example: Approximate the value of $\sqrt{30}$ to the nearest tenth.

 $\sqrt{30}$ is between $\sqrt{25}$ and $\sqrt{36}$ so the value must be between 5 and 6. The approximate value of $\sqrt{30}$ is 5.4.

- 1. Use prime factorization to determine if 196 is a perfect square.
- 2. Evaluate $256^{\frac{1}{2}}$ using prime factorization.
- 3. Evaluate $\sqrt{(25)(4)}$
- 4. Approximate the value of $\sqrt{74}$ to the nearest tenth.

Vocabulary & Key Concepts

Perfect Cube - a number that can be expressed as the product of three equal integral factors

For example) 8 is a perfect cube because $2 \times 2 \times 2 = 8$

Cube Root – one of the three equal factors of a number

For example) $\sqrt[3]{27} = \sqrt[3]{3 \times 3 \times 3}$, therefore 3 is the cube root of 27.

Notation: $\sqrt[3]{x} = x^{\frac{1}{3}}$

 $\sqrt[3]{27}$ For example) = $27^{\frac{1}{3}}$ = 3

Skills

Using Prime Factorization to determine if #'s are perfect cubes.

Example:

Evaluate involving the cubing of numbers.

To evaluate squaring a number the exponent 'goes to' what it is directly beside.

 $(-3)^3$ -3^3 For examples: =(-3)(-3)(-3) vs. $=-3 \times 3 \times 3$ =-27 =-27

Note: Answers are the same regardless of whether there are brackets or not.

Evaluating products under cube root signs:

$$\sqrt[3]{(64)(27)}$$

= $\sqrt[3]{64} \times \sqrt[3]{27}$
= 4 × 3
= 12

Note: Easier to mentally find the cube roots of smaller numbers then multiplying the values together and then taking the cube root of the larger number.

Estimating Cube Roots

To estimate: use the values of perfect cubes that you know as your 'benchmarks' for approximating the values in between.

Memorize the following perfect cubes :

 $\sqrt[3]{1} = 1; \sqrt[3]{8} = 2; \sqrt[3]{27} = 3; \sqrt[3]{64} = 4; \sqrt[3]{125} = 5; \sqrt[3]{216} = 6; \sqrt[3]{343} = 7$

Example: Approximate the value of $\sqrt[3]{95}$ to the nearest tenth.

 $\sqrt[3]{95}$ is between $\sqrt[3]{64}$ and $\sqrt[3]{125}$ so the value must be between 4 and 5. The approximate value of $\sqrt[3]{95}$ is 4.5.

- 1. Determine if 4096 is a perfect cube (use prime factorization).
- 2. Evaluate $\sqrt[3]{\frac{27}{125}}$
- 3. Approximate the value of $\sqrt[3]{74}$ to the nearest tenth.

Concept 4: Mixed and Entire Radicals

Vocabulary & Key Concepts

Radicals (sometimes called the 'root'): an expression that consists of a root symbol, an index and a radicand

Parts of a radical:

Radicand - the quantity or expression under the radical sign

Index - indicates what root to take

Mixed Radical – the product of a rational number and a radical. Eg. $3\sqrt{5}$

Entire Radical – the product of 1 and a radical. Eg. $\sqrt{50}$

<u>Skills</u>

Converting from Entire Radical to a Mixed Radical

Entire radicals can be written as mixed radicals if the radicand has a factor that is a perfect square or perfect cube.

Note: Not all entire radicals can be written as mixed radicals.

Recall: Perfect Squares → 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, etc. Perfect Cubes → 8, 27, 64, 125, 216, etc.

Ex) Convert $\sqrt{24}$ into a mixed radical.

$\sqrt{24} \rightarrow$ Factors of 24	4: 1, 24	$=\sqrt{24}$
	2, 12	$=\sqrt{4\times 6}$
	4, 6 \rightarrow 4 is a perfect square	$=\sqrt{4}\times\sqrt{6}$
		$=2\sqrt{6}$

Ex) Convert $\sqrt[3]{54}$ into a mixed radical.

$$\sqrt[3]{54}$$
 \rightarrow Factors of 54: 1, 54
2, 27 \rightarrow 27 is a perfect cube
 $=\sqrt[3]{27 \times 2}$
 $=\sqrt[3]{27} \times \sqrt[3]{2}$
 $= 3 \times \sqrt[3]{2}$
 $= 3\sqrt[3]{2}$

Converting from Mixed Radical to an Entire Radical

Both numbers need to be written as radicals so that we can multiply and simplify.

Note: ALL mixed radicals can be written as entire radicals.

Ex) Write $4\sqrt{3}$ as an entire radical. $4\sqrt{3}$ = $\sqrt{4^2} \times \sqrt{3}$ = $\sqrt{16} \times \sqrt{3}$ = $\sqrt{48}$

Ex) Write $3\sqrt[3]{4}$ as an entire radical. $3\sqrt[3]{4}$ $= \sqrt[3]{3^3} \times \sqrt[3]{4}$ $= \sqrt[3]{27} \times \sqrt[3]{4}$

- 1. Express the following as mixed radicals.
 - (a) $\sqrt{45}$ (b) $\sqrt[3]{16}$ (c) $80^{\frac{1}{2}}$
- 2. Express the following as entire radicals. (a) $4\sqrt[3]{2}$ (b) $2\sqrt{8}$ (c) $2\sqrt[5]{3}$

Concept 5: Exponent Laws (with Rational Bases)

Vocabulary & Key Concepts

Recall: Laws of Exponents (from Grade 9)

- Multiplying terms with the same base add the exponents In general form: $x^m \times x^n = x^{m+n}$ Example: $2^2 \times 2^5$ $= 2^{2+5}$ $= 2^7$
- Dividing terms with the same base subtract the exponents In general form: $x^m \div x^n = x^{m-n}$ Example: $3^5 \div 3^2$ $= 3^{5-2}$ $= 3^3$
- Power to a power multiply the exponents In general form: $(x^m)^n = x^{m \times n}$ Example: $(4^2)^4$

$$=4^{2\times 4}$$
$$=4^{8}$$

• Power of Zero In general form: $a^0 = 1$, where $a \neq 0$ Examples: (a) $(-6)^0 = 1$ (b) $-6^0 = -1$

<u>Skills</u>

(c)
$$\frac{1}{-5^0 - (-5)^0} = \frac{1}{-1 - 1}$$

= $\frac{1}{-2}$

Evaluating Powers of the Form a^{n}

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Examples:

Write the following expressions as radicals, and then evaluate.

(a)
$$\frac{1}{64^3}$$
 (b) $\frac{1}{(-27)^3}$ (c) $(16)^{\frac{1}{4}}$ (d) $\left(\frac{9}{16}\right)^{\frac{1}{2}}$
 $= \sqrt[3]{64}$ $= \sqrt[3]{-27}$ $= 2$ $= \left(\frac{\sqrt[2]{9}}{\sqrt[2]{16}}\right)$
 $= 4$ $= -3$ $= \frac{3}{4}$

Evaluating Powers with Rational Exponents and Rational Bases

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} OR \quad a^{\frac{m}{n}} = \sqrt[n]{(a)^m}$$

Examples:

Rewrite the following in another form, then evaluate. 2

(a)
$$8^{\frac{2}{3}}$$
 $8^{\frac{2}{3}}$ (b) $25^{\frac{3}{2}}$ (c) $(\frac{1}{4})^{\frac{3}{2}}$
 $= (8^{2})^{\frac{1}{3}}$ $= (8^{\frac{1}{3}})^{2}$ $= \sqrt{25^{3}}$ $= \sqrt{2}\sqrt{25^{3}}$
 $= \sqrt[3]{8^{2}}$ or $= (\sqrt[3]{8})^{2}$ $= (\sqrt[2]{25})^{3}$ $= (\frac{\sqrt{1}}{\sqrt{4}})^{5}$
 $= \sqrt[3]{64}$ $= (2)^{2}$ $= 5^{3}$ $= (\frac{1}{2})^{5}$

Evaluating Powers with Negative Integer Exponents

$$a^{-n} = \frac{1}{a^n}$$
, where $a \neq 0$

Examples:

Evaluate the following:

(a)
$$3^{-2}$$
 (b) -4^{-2} (c) $\left(\frac{3}{2}\right)^{-2}$ (d) $3^{-2} + 3^{-1}$
 $=\left(\frac{1}{3}\right)^{2}$ $=-1(4)^{-2}$ $=\left(\frac{2}{3}\right)^{2}$ $=\left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{1}$
 $=\frac{1^{2}}{3^{2}}$ $=-1\left(\frac{1}{4}\right)^{2}$ $=\frac{2^{2}}{3^{2}}$ $=\frac{1}{9} + \frac{1}{3}$
 $=\frac{1}{3}$ $=\frac{-1}{16}$ $=\frac{4}{9}$ $=\frac{4}{9}$

 $=\frac{1}{32}$

Evaluating Powers with Negative Rational Exponents

$$a^{-\frac{m}{n}} = \left(\frac{1}{a}\right)^{\frac{m}{n}}$$
$$= \sqrt[n]{\left(\frac{1}{a}\right)^{m}}$$

Examples:

Rewrite the following in another form, then evaluate.

(a)
$$27^{-\frac{2}{3}}$$

 $=\left(\frac{1}{27}\right)^{\frac{2}{3}}$
 $=\left(\frac{\sqrt{3}{1}}{\sqrt[3]{27}}\right)^{2}$
 $=\left(\frac{1}{3}\right)^{2}$
 $=\left(\frac{1}{3}\right)^{2}$
 $=\frac{1}{9}$
(b) $\left(\frac{1}{16}\right)^{-\frac{3}{2}}$
 $=\left(\frac{1}{16}\right)^{\frac{3}{2}}$
 $=\left(\frac{16}{1}\right)^{\frac{3}{2}}$
 $=\left(\sqrt{16}\right)^{3}$
 $=4^{3}$
 $=64$

Check your Understanding:

1. Evaluate the following expression. 1

(a)
$$\left(\frac{9}{16}\right)^{\frac{1}{2}}$$
 (b) $49^{\frac{3}{2}}$ (c) $\left(\frac{8}{27}\right)^{\frac{2}{3}}$

(d)
$$16^{\frac{-1}{2}}$$
 (e) $\left(\frac{16}{81}\right)^{\frac{-3}{4}}$

2. Write each radical expression with exponents and integral bases.

(a)
$$\sqrt[5]{4}$$
 (b) $\left(\sqrt{5}\right)^3$ (c) $\frac{1}{\sqrt[3]{3}}$ (d) $\sqrt[6]{2^5}$

Concept 6: Working with Exponents (with Variable Bases)

Vocabulary & Key Concepts

<u>Skills</u>

Simplifying Algebraic Expressions with Integer Exponents

Examples:

Simplify the following expressions. Leave all exponents as positive values.

(a)
$$x^{3}y^{-2} \cdot x^{-4}y^{3} = x^{3}x^{-4} \cdot y^{-2}y^{3} = x^{3+-4} \cdot y^{-2+3} = x^{-1} \cdot y^{1} = \frac{1}{x^{1}} \cdot \frac{y^{1}}{1} = \frac{y^{1}}{x^{1}} \text{ or } \frac{y}{x}$$

(b) $\frac{4m^{3}n^{-2}}{5m} = \frac{4m^{3}}{5m} \cdot n^{-2} = \frac{4m^{$

Simplifying Algebraic Expressions with Rational Exponents

Examples:

Simplify the following expressions. Leave all exponents positive

(a)
$$(25a^4b^2)^{\frac{3}{2}}$$

 $= 25^{\frac{3}{2}} \left(a^4\right)^{\frac{3}{2}} \left(b^2\right)^{\frac{3}{2}}$
 $= \left(\sqrt{25}\right)^3 \left(a^{\frac{12}{2}}\right) \left(b^{\frac{6}{2}}\right)$
 $= 5^3a^6b^3$
 $= 125a^6b^3$
 $= 4 \cdot x^{-5-\frac{1}{2}} \cdot y^{\frac{5}{2}-\left(-\frac{1}{2}\right)}$
 $= 4 \cdot x^{-5-\frac{1}{2}} \cdot y^{\frac{5}{2}-\left(-\frac{1}{2}\right)}$
 $= 4 \cdot x^{-\frac{10}{2}-\frac{1}{2}} \cdot y^{\frac{5}{2}+\frac{1}{2}}$
 $= 4 \cdot x^{-\frac{11}{2}} \cdot y^{\frac{5}{2}}$
 $= 4x^{-\frac{11}{2}} \cdot y^{\frac{5}{2}}$
 $= 4x^{-\frac{11}{2}} \cdot y^{\frac{6}{2}}$
 $= 4y^3$
 $= \frac{4y^3}{x^{\frac{11}{2}}}$

Changing from Radical to Exponential Form

Examples:

Write the following radicals in exponential form with positive exponents.

Solving Problems Using Exponent Laws

Example:

Biologists use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass, *b* kilograms, of a mammal with body mass *m* kilograms. Estimate the brain mass of each animal.

(a) A husky with a body mass of 27 kg

$$b = 0.01m^{\frac{2}{3}} \rightarrow m = 27$$
 $b = 0.01(27)^{\frac{2}{3}}$
 $b = 0.01(\sqrt[3]{27})^{2}$
 $b = 0.01(\sqrt[3]{27})^{2}$
 $b = 0.01(3)^{2}$
 $b = 0.01(9)$
 $b = 0.09kg$

(b) A polar bear with a body mass of 216 kg.

$$b = 0.01m^{\frac{2}{3}} \rightarrow m = 216 \qquad b = 0.01(216)^{\frac{2}{3}}$$
$$b = 0.01(\sqrt[3]{216})^{2}$$
$$b = 0.01(6)^{2}$$
$$b = 0.01(36)$$
$$b = 0.36kg$$

Check your Understanding:

1. Simplify the following. Leave your answer with positive exponents.

(a)
$$(x^3 y^{-\frac{5}{2}})(x^{-1} y^{\frac{1}{2}})$$
 (b) $\left(\frac{50 x^2 y^4}{2 x^4 y^7}\right)^{\frac{1}{2}}$

2. Change the following radicals to exponential form.

(a)
$$\left(\sqrt{\frac{5}{4}}\right)^3$$
 (b) $\left(\sqrt[3]{-10x}\right)^2$

3. Express each as a single power with a single positive exponent.

(a)
$$\sqrt{x} \cdot x^3$$
 (b) $\frac{\left(\sqrt[3]{m}\right)^*}{m}$

Concept 7: Number Systems

Vocabulary & Key Concepts

Real Numbers

- the set of numbers that can be represented as fractions and plotted on a number line.
- Includes all rational and irrational numbers

Rational Numbers (Q)

- Numbers that are expressed in the form $\frac{m}{n}$, where *m* and *n* are integers, $n \neq 0$
- When written as a decimal they will terminate or repeat
- The Rational number set includes:
 - Integers, *I*(...-2, -1, 0, 1, 2 ...)
 - Whole Numbers, W(0, 1, 2, 3...)
 - Natural Numbers, *N* (1, 2, 3...)

Irrational Numbers (\overline{Q})

- A number that cannot be expressed in the form $\frac{m}{n}$ where m and n are integers and $n \neq 0$.
- The decimal representation of an irrational number does not terminate or repeat.

<u>Skills</u>

Classifying Numbers

When asked to classify numbers into number sets – start with the 'smallest' group – Natural numbers – then work your way through more inclusive sets.

Example #1

Classify the following numbers into the correct number system(s).

(a) $\sqrt{2}$	(b) 3	(c) 1.7171171117
Irrational	Natural, Whole,	Irrational
Real	Integer, Rational, Real	Real
$(d)\frac{3}{5}$	(e) $\sqrt{4}$	(f) $\sqrt{8}$
Rational	Natural, Whole Number	Irrational
Real	Integer, Rational, Real	Real
(g) 0	(h) π	
Whole Number	Irrational	
Integer, Rational, Real	Real	

Order Numbers

Use a number line and estimation to order these numbers from least to greatest. 1

$$\sqrt[3]{13}, \sqrt{18}, 9^{\frac{1}{2}}, \sqrt[3]{27}, (-5)^{\frac{1}{3}}$$
Prfect Squares
 $1, 4, 9, 16, 25, 56$.
Perfect Cubes
 $1, 8, 27, 64, 125...$
Perfect Uth root
 $1, 16, 81$
 $\sqrt[3]{13} \rightarrow between \sqrt[3]{8} and \sqrt[3]{27}$
 $\sqrt[3]{13} \rightarrow \sqrt[3]{13} \sqrt[3]{$

- 1. Name the sets of numbers to which each number belongs.
 - (a) $\sqrt{12}$ (b) $\sqrt[4]{16}$ (c) $\sqrt{\frac{4}{9}}$ (d) 1.25
- 2. Use a number line and estimation to order these numbers from least to greatest.

$$\sqrt{2}, (-2)^{\frac{1}{3}}, \sqrt[3]{6}, 30^{\frac{1}{4}}, 2\sqrt{5}$$