## Math 10 C: Relations \& Functions

## Concept \#1-3: Intro to Graphing, Graphing Relations \& Interpreting Graphs

## Vocabulary and Key Concepts

Independent Variables - the variable for which values are selected (the input)
Dependent Variables - the variable whose values depend on those of the independent variable (the output)

Discrete Data - data values on a graph that are not connected
Continuous Data - data values on a graph that are connected

## Restrictions:

Domain: the set of all possible values for the independent variable (all possible inputs)
Range: the set of all possible values for the dependent variable (all possible outputs)
Linear Relations: a relationship between two variables where the independent and the dependent variable change at a constant rate (not necessarily the same rate for independent and dependent).
Ex) The total cost of a banquet, $C$, depends on the number of people, $n$ attending.
Non-Linear Relations: a relationship between two variables that is not linear.

## Skills

## Describing Graphs with Words

## Example \#1

Tell the story that the graph at right could represent.

Answers will vary...


A man leaves a store that is 1 km from his home and walks to his friends house 2 km from his own at a steady rate, which takes him 20 minutes. He stops for a 20 minute visit, and then runs home at a faster pace. It takes him 10 minutes to get the 2 km home.

## Sketching a Graph from Words

## Example \#2

At the beginning of a race, Alicia took 2 s to reach a speed of $8 \mathrm{~m} / \mathrm{s}$. She ran at approximately 8 $\mathrm{m} / \mathrm{s}$ for 12 s , then slowed down to a stop in 2 s . Sketch a graph of speed as a function of time. Label each section of your graph, and explain what it represents.

## Solution

Draw and label axes on a grid. The horizontal axis represents time in seconds. The vertical axis represents speed in metres per second.

| Segment | Journey |
| :--- | :--- |
| OA | Alicia's speed increases from 0 to $8 \mathrm{~m} / \mathrm{s}$, so the <br> segment goes up to the right for the first 2 s. |
| AB | Alicia runs at approximately $8 \mathrm{~m} / \mathrm{s}$ for 12 s. Her speed <br> does not change, so the segment is horizontal. |
| BC | Alicia slows down to $0 \mathrm{~km} / \mathrm{h}$ in 2 s, so her speed <br> decreases and the segment goes down to the right. |

## Alicia's Race



## Representing Data

There are 5 ways we represent data:

1. Words
2. Table of Values
3. Equation
4. Ordered Pairs
5. Graph

## Example \#3

## Words

Three times the length of your ear, $e$, is equal to the length of your face, $f$. (from chin to hairline).

## Ordered Pairs

$(4,12),(4.5,13.5)$,
$(5,15),(5.5,16.5)$,
$(6,18),(6.5,19.5)$

Table of Values

| Ear Length, $e(\mathrm{~cm})$ | Face Length, $f(\mathrm{~cm})$ |
| :---: | :---: |
| 4 | 12 |
| 4.5 | 13.5 |
| 5 | 15 |
| 5.5 | 16.5 |
| 6 | 18 |
| 6.5 | 19.5 |

Graph


## Answering Questions About a Scenario

The table of values shows the cost of movie tickets at a local theatre. The maximum number of people that can fit in the theatre is 300 .

| Number of Tickets | Cost (\$) |
| :---: | :---: |
| 1 | 12 |
| 2 | 24 |
| 3 | 36 |
| 4 | 48 |

(a) Is this a linear or non-linear relationship? Explain how you know.

Linear - The cost increases at the same rate for every increase in the number of tickets.
(b) Assign a variable to represent each quantity in the relation. Which variable is the dependent variable and which is the independent variable?

Number of tickets - $n$ - independent variable
Cost-C-dependent variable
(c) Are the data discrete or continuous? Explain how you know

Discrete - cannot buy a portion of a ticket.
(d) Are there restrictions on the variables? What is the domain and range?

Number of tickets sold must be between 0 and 300 (max capacity of theatre) and must be a whole number.

Cost must be positive and will be a multiple of 12.
(e) Graph the data.


## Example \#4

A 5L juice jug weighs 0.3 kg . Each litre of orange juice has a mass of 2.1 kg . Complete the table below to show the mass of the jug with each amount of juice.
(a) Graph this function on the grid. Include a title and labels for the axes.

| Litres of orange juice (L) | Total mass of jug (kg) |
| :---: | :---: |
| 0 | 0.3 |
| 1 | 2.4 |
| 2 | 6.5 |
| 3 | 8.6 |
| 4 | 10.7 |
| 5 | 12.8 |


(b) Write an equation that represents this relation.

$$
\begin{aligned}
& M=\text { mass of jug } \\
& l=\text { litres of juice }
\end{aligned}
$$

$$
M=0.3+2.1 l
$$

(c) Is the data continuous or discrete? Explain why or why not.

Continuous - we can have a portion of a litre of juice.
(d) What is the domain and range of the graph?

Domain - must be greater than or equal to zero and less than or equal to 5 Range - mass must be greater than 0.3 and less than or equal to 12.8 kg

## Concept \#4: Domain and Range

## Vocabulary and Key Concepts

## Domain

- the set of all possible input values ( $x$-values) for a relation
- distance graph goes left and right
- set of first coordinates of the ordered pairs


## Range

- the set of all possible output values ( $y$-values) for a relation
- distance graph goes up and down
- set of second coordinates of the ordered pairs


## Skills

## Stating Domain and Range in Words

## Example \#1

The total amount of money paid for a play is determined by the equation $A=20 n$, where $n$ is the number of people in attendance. The theatre holds 250 people.
(a) State the independent and dependent variable.

> Independent - number of people
> Dependent - Total money paid
(b) What are the domain and range of this function?

The domain is all integers between 0 and 250 inclusive
The range is all multiples of 20 between 0 and 5000 inclusive.

## Example \#2

The graph below represents the height of a soccer ball that is kicked into the air.

What are the domain and range of this function?
Domain - all real numbers between 0 and 6 inclusive Range - all real numbers between 0 and 5 inclusive


Time (s)

## Stating the Domain and Range of Discrete Relations

The Domain and Range of discrete relations can be stated using:

- Words
- A list
- A number line


## Example \#3

State the domain and range for the following relations:


## Stating the Domain and Range of Continuous Relations

The Domain and Range of Continuous relations can be stated as:

- Words
- Number Line
- Set Notation
- Interval Notation


## Example \#4

Express the domain and range of each graph. Use words, a number line, interval notation and set notation.



## Concept \#5: Functions

## Vocabulary and Key Concepts

## Relation

- a rule that gives one or more output numbers ( $y$ values) for every valid input number ( $x$ value).
- any graph, any equation or any set of ordered pairs


## Function

- a rule that gives a single output number ( $y$ value) for every valid input number ( $x$ value).
- a special type of relation where every $x$ in the ordered pairs are different
- Satisfies the vertical line test - if a vertical line can be drawn through any part of the graph without touching more than one point, the relation is a function
- In general, if a value of $x$ is repeated, it is not a function.


## For example:



Not a function - inputs have more than one output (does not pass the 'vertical line test') For example - if input ( $x$ ) is 0 , output (y) is 3 and -3


Function - every input has only one output (passes the 'vertical line test')

## Skills

## Example \#1

The rule is to "square a number."
The input numbers are $-4,-3,-2,-1,0,1,2,3,4$ (or $-4 \leq x \leq 4, x \in I$ )
(a) Determine the output numbers.

Output $\rightarrow 16,9,4,1,0,1,4,9,16$
(b) Is this rule a function? Explain.

It is a function, every input has only one output (although the outputs are repeated)

## Example \#2

Classify the following as functions or relations. Explain your answer.
(a) $\{(2,3),(4,-1),(6,3),(8,-1)\}$

Function - no values of $x$ have more than one output.
(b)

| $\boldsymbol{x}$ | 1 | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{y}$ | 2 | 4 | 6 | 8 | 10 |

Not a function - if $x=1, y$ has two different answers. (Graph would not pass the vertical line test)
(c)


Not a function - does not pass the vertical line test.

## Functional Notation

Define: $y=f(x)=f$ of $x \rightarrow$ the value of a function at a given value of $x$

## Example \#1

Find the value of $y$ at the given value of $x$ in the following graph.


$$
\begin{aligned}
& f(2)=5 \\
& f(-3)=10 \\
& f(0)=1
\end{aligned}
$$

If the equation for the graph at right is $f(x)=x^{2}+1$, calculate $f(2)$ algebraically by substituting 2 in for $x$.

## Example \#2

The height of a ball thrown up into the air from ground level is a function of time, as given by the equation $h(t)=-4 t^{2}+16 t$, where t is the time in seconds and h is the height in meters.
(a) Explain in words what $h(2)=16$ means in this situation.

The height of the ball when time is 2 seconds is 16 meters
(b) How high would the ball be after 3 seconds? Express your answer in function notation.

$$
\begin{aligned}
& h(t)=-4 t^{2}+16 t \\
& h(3)=-4(3)^{2}+16(3) \\
& h(3)=-4(9)+48 \quad \text { Therefore, the height of the ball when time is } 3 \text { seconds is } 12 \mathrm{~m} . \\
& h(3)=-36+48 \quad \\
& h(3)=12
\end{aligned}
$$

## Example \#3

If $f(x)=x^{2}-3 x+7$, calculate:
(a) $f(2)$

$$
\begin{aligned}
& f(2)=(2)^{2}-3(2)+7 \\
& f(2)=4-6+7 \\
& f(2)=-2+7 \\
& f(2)=5
\end{aligned}
$$

(b) $f(-1)$
$f(-1)=(-1)^{2}-3(-1)+7$
$f(-1)=1+3+7$
$f(-1)=11$

## Example \#4

If $g(x)=7+2 x$, calculate $g(x)=-5$

$$
\begin{aligned}
& -5=7+2 x \\
& -5-7=2 x \\
& -12=2 x \\
& x=-6
\end{aligned}
$$

