Math 10 C: Shape & Space

C1 & C2 Measurements & Unit Conversions

Vocabulary & Key Concepts

Referent – an object used to estimate a measure; for example, a referent for a measure of 1 mm is the thickness of a dime.

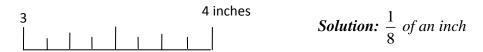
The SI (Metric) System

The measurement system in Canada is the SI System.

SI (Systeme International d'Unites)

- a measurement system that is based on the base of 10.
- The base unit of measure, for length, is metres

Using these prefixes we can apply the conversions to grams (mass), litres (volume) and others.


Unit	Abbreviation	Multiplying Factor
kilometre	km	1000
hectometre	hm	100
decametre	dam	10
metre	m	1
decimetre	dm	0.1
centimetre	cm	0.01
millimetre	mm	0.001

The Imperial System

Most of the world uses SI measurement, although the United States uses the **Imperial Measurement System**, which is based on British units. The imperial system was used in Canada prior to 1976.

Measuring devices using this system often have each unit subdivided by halving and then halving the subdivisions.

Ex) Determine the smallest indicated unit on the diagram of an inch ruler below.

Conversion within Imperial units is more difficult to do by hand and should be done using ratios and a chart such as this one.

When we move into the Imperial System the use of fractions and decimals become more prevalent.

The abbreviations and conversions	inch (in. or ")	
for the imperial system are:	foot (ft or ')	1 ft = 12 in.
	yard (yd)	1 yd = 3 ft or 36 in.
	mile (mi)	1 mi = 1760 yd or 5280 ft

Converting Between SI and Imperial

The following are so	me common conversio	ns.
Exact Conversions		
1 in. = 2.54 cm	1 ft = 30.48 cm	1 yd = 0.9144 m
e Approximate Conversions		
$1 \text{ mm} \approx 0.0394 \text{ in.}$	$1 \text{ cm} \approx 0.3937 \text{ in.}$	$1 \text{ m} \approx 1.094 \text{ yd}$
1 m ≈ 3.281 ft	$1 \ \mathrm{km} \approx 0.6214 \ \mathrm{mi}$	$1 \text{ mi} \approx 1.609 \text{ km}$
	Exact Conversions 1 in. = 2.54 cm Approximate Conversion 1 mm $\approx 0.0394 \text{ in.}$	1 in. = 2.54 cm 1 ft = 30.48 cm Approximate Conversions 1 mm ≈ 0.0394 in. 1 cm ≈ 0.3937 in.

Two Methods to Convert Units

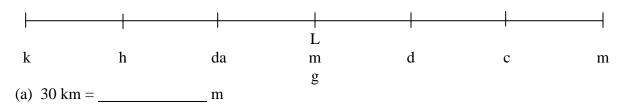
1. **Proportional Reasoning** – set up equivalent ratios and cross multiply to solve for a missing value.

For Example: Convert 96 cm to in.

$$\frac{96 \text{ cm}}{x \text{ in}} = \frac{2.54 \text{ cm}}{1 \text{ in}}$$
$$96 = 2.54x$$
$$x = 37.8 \text{ in}$$

2. Unit Analysis – Set up a multiplication statement using equivalencies which will cancel out the units you are converting from and leave you with the units you are converting to.

For Example: Convert 96 cm to in.


$$96 \, cm \times \left(\frac{1 in}{2.54 \, cm}\right)$$
$$96 \, cm \times \left(\frac{1 in}{2.54 \, cm}\right)$$
$$x = \frac{96}{2.54} in$$
$$x = 37.8 in$$

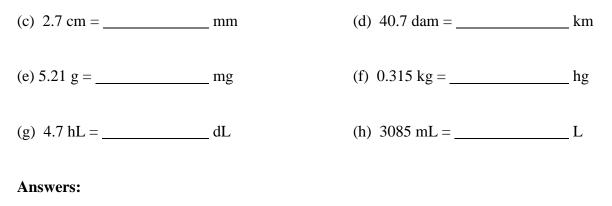
<u>Skills</u>

Converting within the Metric System

Example #1

Use your formula sheet or the metric line below to convert the following units.

Solution: To move from k to m on the scale above, you must move 3 spaces to the right, so add 3 zeros onto 30 km (multiply 30 by 1000)


 $30 \ km = 30 \ 000 \ m$

(b) $42\ 307\ cm = __km$

Solution: To move from cm to km on the scale above, you must move 5 spaces to the left, so move the decimal 5 spaces on the given number

 $42307 \ cm = 0.42307 \ km$

Try:

(c) 27 mm (d) 0.407 km (e) 5210 mg (f) 3.15 hg (g) 4700 dL (h) 3.085 L

Converting within the Imperial System

inch (in. or ")	
foot (ft or ')	1 ft = 12 in.
yard (yd)	1 yd = 3 ft or 36 in.
mile (mi)	1 mi = 1760 yd or 5280 ft

Example #2

Use the conversions above to convert the following units.

(a) 5 feet =	inches	(b) $5.2 \text{ pounds} = $	ounces
Solution: $\frac{feet}{inches} \rightarrow \frac{1}{1}$	$\frac{1}{2} = \frac{5}{x}$ $= 5 \times 12$	Solution: $\frac{point}{out}$	$\frac{unds}{nces} \rightarrow \frac{1}{16} = \frac{5.2}{x}$ $x = 16 \times 5.2$
<i>x</i> = Try:	= 60 inches		x = 83.2 inches
11			
(c) 207 inches =	yards	(d) 12 feet 2 inches = (d)	inches
(e) 32560 yards =	miles	(f) 6 yards 2 feet =	feet
Answers (c) 5.75 yards	(d) 146 inches	(e) 18.5 miles (f) 20	feet

Example #3

Dave knows he is 5 feet 7 inches tall. When he goes to get his driver's license, he must give his height in cm. **Determine** Dave's height to the nearest cm.

Solution: Step 1: Convert 5 feet into inches.

$$\frac{feet}{inches} \rightarrow \frac{1}{12} = \frac{5}{x}$$
$$x = 5 \times 12$$
$$x = 60 \text{ inches}$$

Step 2: Combine feet measurement and inches measurement. 60 inches + 7 inches = 67 inches

Step 3: Convert inches to cm.

$$\frac{inches}{cm} \rightarrow \frac{1}{2.54} = \frac{67}{x}$$
$$x = 2.54 \times 67$$
$$x = 170 \text{ cm}$$

Try:

Maggie harvested the potatoes in her garden and found that each potato plant yielded 10 potatoes. Each potato had a mass of 180 g. **Determine** how many kilograms of potatoes Maggie harvested from the 14 plants in her garden?

Solution: 252 kg

Relationships between Common Imperial Units and Metric Units	
1 inch = 2.54 cm	1 cm = 0.3937 inches
1 mile = 1.609 km	1 km = 0.6214 miles
1 yard = 0.9144 m	1 m = 1.0936 yards
1 foot = 0.3048 m	1 m = 3.2808 feet

Converting between the Metric and Imperial System

Example #4

Use the table above to complete the following metric and imperial conversions:

(a) 114 in = _____ m

Proportional Reasoning:	Unit Analysis	
$\frac{114 \text{ in}}{1000 \text{ m}} = \frac{1 \text{ in}}{1000 \text{ m}}$	114 in $\times \left(\frac{2.54 \ cm}{1 \ in}\right)$	
$x \ cm$ 2.54 cm	$114 m \times \left(\frac{1}{1 in}\right)$	
$x = 114 \times 2.54$	$x = 114 \times 2.54$	
x = 289.56 cm	x = 289.56 cm	
Convert cm to $m - 289.56 \div 100 = 2.90m$	Convert cm to $m - 289.56 \div 100 = 2.90m$	

(b) $52 \text{ km} = ____mi$

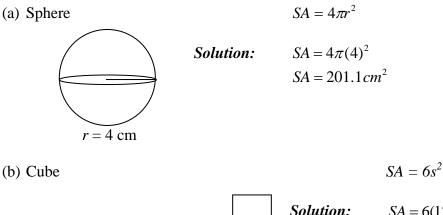
 $\frac{52 \, km}{x \, mi} = \frac{1 \, km}{1.609 \, mi}$ $x = 52 \times 1.609$ $x = 83.67 \, mi$

Vocabulary and Key Concepts

Surface Area: Total area of all faces of an object. Common units used: cm^2 , m^2 , $units^2$, inches²

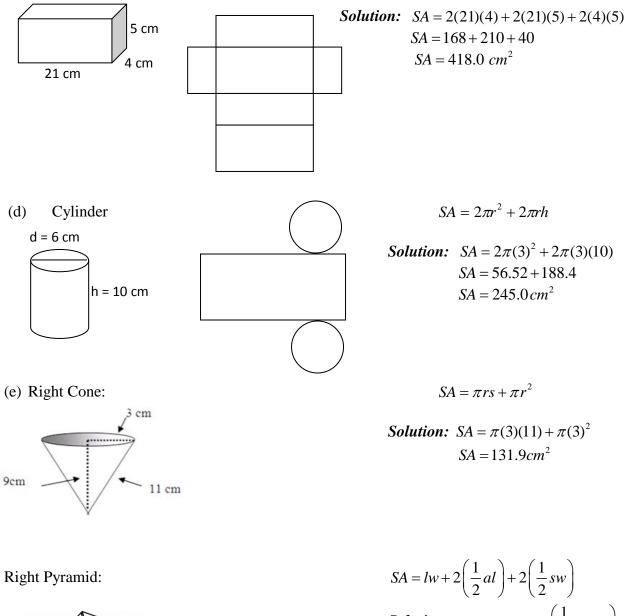
Area is the number of square units that will cover a shape. *Surface area* is the combined area of all of the surfaces of a 3-dimensional shape.

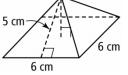
Volume: Amount an object can hold. Common units used: cm^3 , m^3 , units³, inches³


Volume can be defined as capacity of an object. (i.e.: how much liquid an object will hold.)

Note: Formulas for Surface Area and Volume will be provided on exams and quizzes. However, you should have a good understanding of what the components of the formulas represent.

<u>Skills</u>


Example #1


Determine the surface area of each of the following shapes, rounded to the nearest tenth. Write the dimensions on the nets for the cube, cylinder, and rectangular-based prism.

12

m Solution:
$$SA = 6(12)^2$$

 $SA = 864.0 m^2$

 $SA = lw + 2\left(\frac{1}{2}al\right) + 2\left(\frac{1}{2}sw\right)$ Solution: $SA = (6)(6) + 4\left(\frac{1}{2}(6)(5)\right)$ SA = 36 + 60

 $SA = 96cm^2$

Try:

The circumference of a ball hockey ball is 24 cm.

(a) Using the circumference formula, **determine** the radius of the ball hockey ball, rounded to the nearest hundredth.

Answer: 3.82cm

(b) **Determine** the surface area of the ball hockey ball, rounded to the nearest tenth.

Answer: 183.4 cm²

(c) If the plastic coating on the outside of the ball costs \$0.01 per cm², **determine** what it costs for the plastic coating.

Answer: \$1.83

Working Backwards

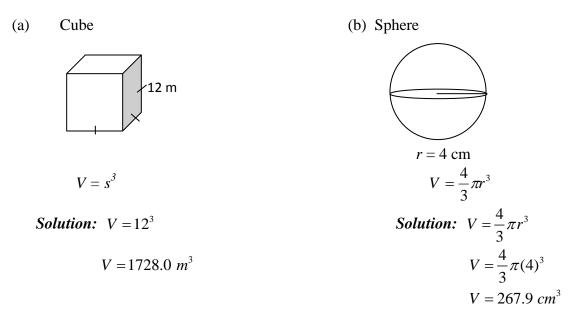
Sometimes, we know the surface area of a sphere but we need to solve for the radius. Manipulate the variables of the surface area formula to **solve** for the radius, r.

Example #2

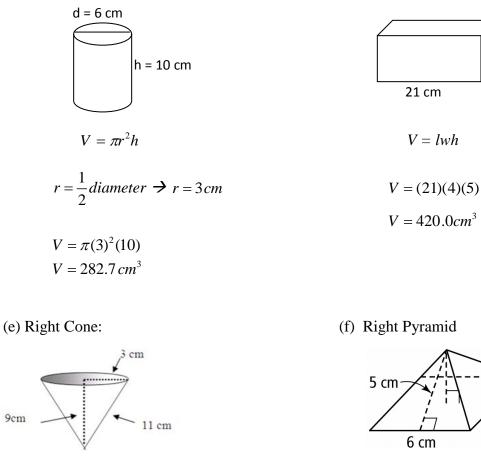
(a) A sphere has a surface area of 100 cm^2 . **Determine** the radius of the sphere, to the nearest hundredth by substituting the values into the formula and solving for the radius, r.

$$SA = 4\pi r^{2}$$
$$100 = 4\pi r^{2}$$
$$\frac{100}{4\pi} = r^{2}$$
$$r^{2} = 7.96$$
$$r = 2.82cm$$

Try:


(b) A sphere has a surface area of 50 cm^2 . **Determine** the diameter of the sphere, to the nearest hundredth.

Answer: 3.99 cm


Volume

Example

Determine the volume of each of the following shapes, rounded to the nearest tenth. Identify the name of the shape first.

(c) Cylinder

$$V = \frac{1}{3}\pi r^{2}h$$

$$V = \frac{1}{3}lwh$$

$$V = \frac{1}{3}\pi (3)^{2} (9)$$

$$V = 84.8cm^{3}$$

$$V = \frac{1}{3}(6)(6)(5)$$

$$V = 60cm^{3}$$

Try

9cm

Determine the volume of a sphere with a diameter of 9 cm, rounded to the nearest tenth.

$$V = \frac{4}{3}\pi r^3$$

Answer: 381.7 cm³

Rectangular Prism (d)

5 cm

4 cm

6 cm

Working Backwards with Volume

Sometimes, we know the volume of a sphere but we need to solve for the radius. Manipulate the variables of the volume formula to solve for the radius, r.

Example #4

A sphere has a volume of 100 cm³. **Determine** the radius of the sphere, to the nearest hundredth by substituting the values into the formula and solving for the radius, r. Recall: $V = \frac{4}{3}\pi r^3$

Solution:
$$100 = \frac{4}{3}\pi r^{3}$$

 $3 \times 100 = 4\pi r^{3}$
 $\frac{300}{4\pi} = r^{3}$
 $r^{3} = 23.8854$
 $r = \sqrt[3]{23.8854}$
 $r = 2.88 \ cm$

Example #4

A sphere has a volume of 50 cm^3 . **Determine** the diameter of the sphere, to the nearest hundredth by substituting the values into the formula and solving for the radius, r. Then, **determine** the diameter of the sphere.

$$V = \frac{4}{3}\pi r^3$$

Answer: 4.57 cm