Math 20-2: U6L3 Teacher Notes
 Factored Form of a Quadratic Function

Key Math Learnings:
 By the end of this lesson, you will learn the following concepts:

- determine, with or without technology, the coordinates of the vertex of the graph of a quadratic function.
- determine the equation of the axis of symmetry of the graph of a quadratic function, given the x-intercepts of the graph.
- determine the domain and range of a quadratic function.
- sketch the graph of a quadratic function.
- solve problems that involves the characteristics of a quadratic function.
- determine, with or without technology, the intercepts of the graph of a quadratic function.
- express a quadratic equation in factored form, given the zeros of the corresponding quadratic function or the x-intercepts of the graph of the function.

Factored Form of a Quadratic

Another form that a Quadratic function can be written in is Factored Form.

$$
y=a(x-r)(x-s)
$$

Before we can continue on to understand how factored form is related to the graph of a function, lets review factoring. Watch the following Brightstorm videos to help you refresh your memory.
brighistorm Difference of Perfect Squares
brighistorm. Factoring Trinomials, $\mathrm{a}=1$
brighistorm. Factoring Trinomials, a is not equal to 1

What is a Zero?

When a quadratic function is written in factored form, each factor can be used to determine a zero of the function by setting each factor equal to zero and solving.

Please note from the above picture, that the zeros of a quadratic function correspond to the x-intercepts of the parabola that is defined by the function.

The Number of X-Intercepts

1. Two X-Intercepts

If a parabola has one or two x-intercepts, the equation of the parabola can be written in factored form using the x-intercept(s) and the coordinates of one other point on the parabola.

2. One X-Intercepts

If a quadratic function has only one x-intercept, the factored form can be written as follows:

$$
\begin{aligned}
& f(x)=a(x-r)(x-r) \\
& f(x)=a(x-r)^{2}
\end{aligned}
$$

3. No X-Intercepts

Quadratic functions without any zeros cannot be written in factored form.

Example

For the quadratic function below

$$
h(x)=2(x+1)(x-7)
$$

a) determine the x-intercepts of the graph
b) determine the y-intercept of the graph
c) determine the equation of the axis of symmetry
d) determine the coordinates of the vertex
e) sketch the graph

Solution:

a. The x-intercepts are -1 and 7 .
b.
$f(0)=2(1)(-7)$
$f(0)=-14$
The y-intercept is -14 .
c. $\frac{-1+7}{2}=3$, so the equation of the axis of symmetry is $x=3$
d.

$$
\begin{aligned}
& f(3)=2(3+1)(3-7) \\
& f(3)=(8)(-4) \\
& f(3)=-32
\end{aligned}
$$

The vertex is $(3,-32)$
e) Here is the diagram.

Example

For the quadratic function below

$$
f(x)=(x-1)(x+1)
$$

a) determine the x-intercepts of the graph
b) determine the y-intercept of the graph
c) determine the equation of the axis of symmetry
d) determine the coordinates of the vertex
e) sketch the graph

Solution:
a) The x-intercepts are 1 and -1 .
b) The y-intercept is $(0-1)(0+1)=-1$.
c)

$$
\frac{-1+1}{2}=0
$$

The equation of the axis of symmetry is $x=0$.
d) $f(0)=-1$

The vertex is $(0,-1)$.
e)

Example

Sketch the graph of $y=a(x-3)(x+1)$
for $a=3$. Describe how the graph would be different from your sketch if the value of a were $2,1,0$, $-1,-2$, and -3 .

Solution:

For $a=3, x$-intercepts: 3 and -1
y-intercept: -9
Equation of the axis of symmetry: $x=1$.
Vertex: $(1,-12)$
Opens upward.

For $a=1$ or 2 , the vertex would be closer to the x-axis and the x-intercepts would be the same, so the graph would be compressed vertically.
For $a=0$, the graph would be a straight line, the x-axis $(y=0)$.
For $a=-3$, the graph would be a reflection of the graph for $a=3$, and would open downward.
For $a=-1$ or -2 , the graph would be a reflection of the graph for $a=1$ or 2 , so it would be more compressed that the graph for $a=3$ and open downward.

Example

For the quadratic function below

$$
f(x)=x^{2}-8 x+13
$$

a) use partial factoring to determine two points that are the same distance from the axis of symmetry
b) determine the coordinates of the vertex
c) sketch the graph

Solution:

a)
$f(x)=x(x-8)+13$
$f(0)=13$
$f(8)=13$
The two points are $(0,13)$ and $(8,13)$.
b)
$\frac{0+8}{2}=4$
$f(4)=4(4-8)+13$
$f(4)=-3$
The vertex is $(4,-3)$.
c)

Example

For the quadratic function below

$$
f(x)=-\frac{1}{2} x^{2}+2 x-3
$$

a) use partial factoring to determine two points that are the same distance from the axis of symmetry
b) determine the coordinates of the vertex
c) sketch the graph

Solution:

a)

$$
f(x)=-\frac{1}{2} x(x-4)-3
$$

$f(0)=-3$
$f(4)=-3$
The two points are $(0,-3)$ and $(4,-3)$.
b)

$$
\begin{aligned}
& \frac{0+4}{2}=2 \\
& f(2)=-\frac{1}{2}(2)(2-4)-3 \\
& f(2)=-1
\end{aligned}
$$

$$
\text { The vertex is }(2,-1)
$$

c)

Example

For the quadratic function below

$$
f(x)=-2 x^{2}+10 x-9
$$

a) use partial factoring to determine two points that are the same distance from the axis of symmetry
b) determine the coordinates of the vertex
c) sketch the graph

Solution:

a)
$f(x)=-2 x(x-5)-9$
$f(0)=-9$
$f(5)=-9$
The two points are $(0,-9)$ and $(5,-9)$.
b)
$\frac{0+5}{2}=2.5$
$f(2.5)=-2(2.5)(2.5-5)-9$
$f(2.5)=3.5$
The vertex is $(2.5,3.5)$.
c)
\qquad WWW/div29web/Master_Cou...

Example

Determine the equation of the quadratic function that defines each parabola.

a.
b.

Solution:

a.

The x-intercepts are 1 and 4.
$y=a(x-1)(x-4)$
The y - is 4 .
$4=a(0-1)(0-4)$
$4=4 a$
$1=a$
So the function is
$y=(x-1)(x-4)$
$y=x^{2}-5 x+4$
b.

The x-intercepts are 0 and 6.
$y=a x(x-6)$
The vertex is $(3,9)$.
$9=a(3)(3-6)$
$9=-9 a$
$-1=a$
So the function is
$y=-x(x-6)$
$y=-x^{2}+6 x$

Exampleldentify the key characteristics you could use to determine the quadratic function that defines this graph. Explain how you would use these characteristics.

Solution:

e.g., The x-intercepts are -3 and 1 .

The function is $y=a(x+3)(x-1)$.
Substitute a point on the graph such as $(3,6)$ to
 determine that $a=\frac{1}{3}$

Summary of Factored Form of Quadratic Form

A quadratic function that is written in the form

$$
y=a(x-r)(x-s)
$$

has the following characteristics:

- The x-intercepts of the graph of the function are $x=r$ and $x=s$.
- The linear equation of the axis of symmetry is $x=\frac{r+s}{2}$.
- The y-intercept, c, is $c=a \cdot r \cdot s$.

- If a quadratic function has only one x-intercept, the factored form can be written as follows:
$f(x)=a(x-r)(x-r)$
$f(x)=a(x-r)^{2}$

